BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12691585)

  • 1. A density functional evaluation of an Fe(III)-Fe(IV) model diiron cluster: comparisons with ribonucleotide reductase intermediate X.
    Han WG; Lovell T; Liu T; Noodleman L
    Inorg Chem; 2003 Apr; 42(8):2751-8. PubMed ID: 12691585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional study of a micro-1,1-carboxylate bridged Fe(III)-O-Fe(IV) model complex. 2. Comparison with ribonucleotide reductase intermediate X.
    Han WG; Lovell T; Liu T; Noodleman L
    Inorg Chem; 2004 Jan; 43(2):613-21. PubMed ID: 14731023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase.
    Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM
    Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory study of Fe(IV) d-d optical transitions in active-site models of class I ribonucleotide reductase intermediate X with vertical self-consistent reaction field methods.
    Han WG; Liu T; Lovell T; Noodleman L
    Inorg Chem; 2006 Oct; 45(21):8533-42. PubMed ID: 17029364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III).
    Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L
    Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediation by indole analogues of electron transfer during oxygen activation in variants of Escherichia coli ribonucleotide reductase R2 lacking the electron-shuttling tryptophan 48.
    Saleh L; Kelch BA; Pathickal BA; Baldwin J; Ley BA; Bollinger JM
    Biochemistry; 2004 May; 43(20):5943-52. PubMed ID: 15147178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seven clues to the origin and structure of class-I ribonucleotide reductase intermediate X.
    Han WG; Liu T; Lovell T; Noodleman L
    J Inorg Biochem; 2006 Apr; 100(4):771-9. PubMed ID: 16504298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli.
    Baldwin J; Krebs C; Saleh L; Stelling M; Huynh BH; Bollinger JM; Riggs-Gelasco P
    Biochemistry; 2003 Nov; 42(45):13269-79. PubMed ID: 14609338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2:2 Fe(III):ligand and "adamantane core" 4:2 Fe(III):ligand (hydr)oxo complexes of an acyclic ditopic ligand.
    Ghiladi M; Larsen FB; McKenzie CJ; Sotofte I; Tuchagues JP
    Dalton Trans; 2005 May; (9):1687-92. PubMed ID: 15852119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site structure of class I ribonucleotide reductase intermediate X: a density functional theory analysis of structure, energetics, and spectroscopy.
    Han WG; Liu T; Lovell T; Noodleman L
    J Am Chem Soc; 2005 Nov; 127(45):15778-90. PubMed ID: 16277521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (Mu-1,2-peroxo)diiron(III/III) complex as a precursor to the diiron(III/IV) intermediate X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse.
    Yun D; García-Serres R; Chicalese BM; An YH; Huynh BH; Bollinger JM
    Biochemistry; 2007 Feb; 46(7):1925-32. PubMed ID: 17256972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes.
    Jensen KP; Bell CB; Clay MD; Solomon EI
    J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide.
    Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA
    Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the oxidation level, the spin state, and the degree of electron delocalization in homo- and heteroleptic bis(alpha-diimine)iron complexes.
    Khusniyarov MM; Weyhermüller T; Bill E; Wieghardt K
    J Am Chem Soc; 2009 Jan; 131(3):1208-21. PubMed ID: 19105752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy.
    Pierce BS; Elgren TE; Hendrich MP
    J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT calculations of 57Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase.
    Han WG; Liu T; Lovell T; Noodleman L
    J Comput Chem; 2006 Sep; 27(12):1292-306. PubMed ID: 16786546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of two self-hydroxylating ribonucleotide reductase protein R2 mutants: structural basis for the oxygen-insertion step of hydroxylation reactions catalyzed by diiron proteins.
    Logan DT; deMaré F; Persson BO; Slaby A; Sjöberg BM; Nordlund P
    Biochemistry; 1998 Jul; 37(30):10798-807. PubMed ID: 9692970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT calculations of comparative energetics and ENDOR/Mössbauer properties for two protonation states of the iron dimer cluster of ribonucleotide reductase intermediate X.
    Han WG; Noodleman L
    Dalton Trans; 2009 Aug; (30):6045-57. PubMed ID: 19623405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system.
    Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K
    J Am Chem Soc; 2008 Mar; 130(10):3181-97. PubMed ID: 18284242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.