BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12691722)

  • 1. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events.
    Camps M; Hillier S; Vidal M; Rauret G
    J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration and bioavailability of (137)Cs in forest soil of southern Germany.
    Konopleva I; Klemt E; Konoplev A; Zibold G
    J Environ Radioact; 2009 Apr; 100(4):315-21. PubMed ID: 19167790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium.
    Gil-García C; Rigol A; Vidal M
    J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling 137Cs uptake in plants from undisturbed soil monoliths.
    Waegeneers N; Smolders E; Merckx R
    J Environ Radioact; 2005; 81(2-3):187-99. PubMed ID: 15795034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of K and bentonite additions on Cs-transfer to ryegrass.
    Vandenhove H; Cremers A; Smolders E; Van Hees M
    J Environ Radioact; 2005; 81(2-3):233-53. PubMed ID: 15795037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mechanistic and PLS-based regression models to predict radiocaesium distribution coefficients in soils.
    Gil-García CJ; Rigol A; Vidal M
    J Hazard Mater; 2011 Dec; 197():11-8. PubMed ID: 21993147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil-water distribution coefficients and plant transfer factors for (134)Cs, (85)Sr and (65)Zn under field conditions in tropical Australia.
    Twining JR; Payne TE; Itakura T
    J Environ Radioact; 2004; 71(1):71-87. PubMed ID: 14557038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.
    Goor F; Thiry Y
    Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake.
    Rigol A; Vidal M; Rauret G
    J Environ Radioact; 2002; 58(2-3):191-216. PubMed ID: 11814166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the dynamics of fish contamination by Chernobyl radiocaesium: an analytical solution based on potassium mass balance.
    Koulikov AO; Meili M
    J Environ Radioact; 2003; 66(3):309-26. PubMed ID: 12600762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of radionuclide aging in soils from the Chernobyl and Mediterranean areas.
    Roig M; Vidal M; Rauret G; Rigol A
    J Environ Qual; 2007; 36(4):943-52. PubMed ID: 17526873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of season and leaf age on concentrations of radiocaesium (137Cs), stable caesium (133Cs) and potassium in Agrostis capillaris.
    Salt CA; Kay JW; Jarvis KE
    Environ Pollut; 2004 Aug; 130(3):359-69. PubMed ID: 15182969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of the effects of agricultural practices designed to reduce 137Cs and 90Sr soil-plant transfer in meadows.
    Camps M; Rigol A; Hillier S; Vidal M; Rauret G
    Sci Total Environ; 2004 Oct; 332(1-3):23-38. PubMed ID: 15336888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 137Cs soil-to-plant transfer for individual species in a semi-natural grassland. Influence of potassium soil content.
    Ciuffo L; Velasco H; Belli M; Sansone U
    J Radiat Res; 2003 Sep; 44(3):277-83. PubMed ID: 14646233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of pre- and post-Chernobyl radiocaesium with particle size fractions of soils.
    Spezzano P
    J Environ Radioact; 2005; 83(2):117-27. PubMed ID: 15923068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination.
    Vandebroek L; Van Hees M; Delvaux B; Spaargaren O; Thiry Y
    J Environ Radioact; 2012 Feb; 104():87-93. PubMed ID: 21963466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of radiocaesium in sensitive agricultural environments after the Chernobyl fallout in Sweden. I. County of Gavleborg.
    Rosen K; Eriksson A; Haak E
    Sci Total Environ; 1996 Apr; 182(1-3):117-33. PubMed ID: 8854942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of radiocaesium in sensitive agricultural environments after the Chernobyl fallout in Sweden. II. Marginal and semi-natural areas in the county of Jamtland.
    Rosen K
    Sci Total Environ; 1996 Apr; 182(1-3):135-45. PubMed ID: 8854943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.
    Uematsu S; Vandenhove H; Sweeck L; Van Hees M; Wannijn J; Smolders E
    J Environ Radioact; 2016 Mar; 153():51-60. PubMed ID: 26717351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.