BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 12691754)

  • 1. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme.
    Uchida T; Takamoto K; He Q; Chance MR; Brenowitz M
    J Mol Biol; 2003 Apr; 328(2):463-78. PubMed ID: 12691754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding mechanism of the Tetrahymena ribozyme P4-P6 domain.
    Deras ML; Brenowitz M; Ralston CY; Chance MR; Woodson SA
    Biochemistry; 2000 Sep; 39(36):10975-85. PubMed ID: 10998234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme.
    Uchida T; He Q; Ralston CY; Brenowitz M; Chance MR
    Biochemistry; 2002 May; 41(18):5799-806. PubMed ID: 11980483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concordant exploration of the kinetics of RNA folding from global and local perspectives.
    Kwok LW; Shcherbakova I; Lamb JS; Park HY; Andresen K; Smith H; Brenowitz M; Pollack L
    J Mol Biol; 2006 Jan; 355(2):282-93. PubMed ID: 16303138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hinge stiffness is a barrier to RNA folding.
    Schlatterer JC; Kwok LW; Lamb JS; Park HY; Andresen K; Brenowitz M; Pollack L
    J Mol Biol; 2008 Jun; 379(4):859-70. PubMed ID: 18471829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme.
    Takamoto K; He Q; Morris S; Chance MR; Brenowitz M
    Nat Struct Biol; 2002 Dec; 9(12):928-33. PubMed ID: 12434149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure.
    Shcherbakova I; Brenowitz M
    J Mol Biol; 2005 Nov; 354(2):483-96. PubMed ID: 16242711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations.
    Takamoto K; Das R; He Q; Doniach S; Brenowitz M; Herschlag D; Chance MR
    J Mol Biol; 2004 Nov; 343(5):1195-206. PubMed ID: 15491606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme.
    Murphy FL; Wang YH; Griffith JD; Cech TR
    Science; 1994 Sep; 265(5179):1709-12. PubMed ID: 8085157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple folding pathways for the P4-P6 RNA domain.
    Silverman SK; Deras ML; Woodson SA; Scaringe SA; Cech TR
    Biochemistry; 2000 Oct; 39(40):12465-75. PubMed ID: 11015228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 2001 Mar; 493(2-3):95-100. PubMed ID: 11287003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding.
    Laederach A; Shcherbakova I; Jonikas MA; Altman RB; Brenowitz M
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7045-50. PubMed ID: 17438287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting.
    Sclavi B; Sullivan M; Chance MR; Brenowitz M; Woodson SA
    Science; 1998 Mar; 279(5358):1940-3. PubMed ID: 9506944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two major tertiary folding transitions of the Tetrahymena catalytic RNA.
    Laggerbauer B; Murphy FL; Cech TR
    EMBO J; 1994 Jun; 13(11):2669-76. PubMed ID: 8013466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbed folding kinetics of circularly permuted RNAs with altered topology.
    Heilman-Miller SL; Woodson SA
    J Mol Biol; 2003 Apr; 328(2):385-94. PubMed ID: 12691747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.