These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12691885)

  • 1. Effect of extended idle conditions on structure and activity of granular activated sludge.
    Zhu J; Wilderer PA
    Water Res; 2003 May; 37(9):2013-8. PubMed ID: 12691885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-activation characteristics of preserved aerobic granular sludge.
    Zhang LL; Zhang B; Huang YF; Cai WM
    J Environ Sci (China); 2005; 17(4):655-8. PubMed ID: 16158599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process.
    Ong SA; Toorisaka E; Hirata M; Hano T
    J Hazard Mater; 2004 Sep; 113(1-3):111-21. PubMed ID: 15363520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater.
    Ni BJ; Xie WM; Liu SG; Yu HQ; Wang YZ; Wang G; Dai XL
    Water Res; 2009 Feb; 43(3):751-61. PubMed ID: 19059624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Granulation in an upflow anaerobic sequencing batch reactor treating disintegrated waste activated sludge.
    Park KY; Kim DY; Chung TH
    Water Sci Technol; 2005; 52(12):105-11. PubMed ID: 16477977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chlorine on filamentous microorganisms present in activated sludge as evaluated by respirometry and INT-dehydrogenase activity.
    Caravelli A; Giannuzzi L; Zaritzky N
    Water Res; 2004 May; 38(9):2394-404. PubMed ID: 15142801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments on "effect of extended idle conditions on structure and activity of granular activated sludge" by Zhu and Wilderer.
    Liu Y; Liu QS; Qin L; Tay JH
    Water Res; 2004; 38(14-15):3465-6; discussion 3467-9. PubMed ID: 15276764
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of the impact of single-walled carbon nanotubes in an activated sludge wastewater reactor.
    Yin Y; Zhang X
    Water Sci Technol; 2008; 58(3):623-8. PubMed ID: 18725731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-treatment of UASB effluent in an expanded granular sludge bed reactor type using flocculent sludge.
    Kato MT; Florencio L; Arantes RF
    Water Sci Technol; 2003; 48(6):279-84. PubMed ID: 14640229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SBR and its biofilm application potentials.
    Wilderer PA; McSwain BS
    Water Sci Technol; 2004; 50(10):1-10. PubMed ID: 15656289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of settling time on the formation of aerobic granules.
    McSwain BS; Irvine RL; Wilderer PA
    Water Sci Technol; 2004; 50(10):195-202. PubMed ID: 15656313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of high saline wastewaters on anaerobic granular sludge functionalities.
    Jeison D; Del Rio A; Van Lier JB
    Water Sci Technol; 2008; 57(6):815-9. PubMed ID: 18413939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen removal from sludge water with SBR process: start-up of a full-scale plant in the municipal wastewater treatment plant at Ingolstadt, Germany.
    Vallés-Morales MJ; Mendoza-Roca JA; Bes-Piá A; Iborra-Clar A
    Water Sci Technol; 2004; 50(10):51-8. PubMed ID: 15656295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor.
    Schwarzenbeck N; Borges JM; Wilderer PA
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):711-8. PubMed ID: 15558277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass transfer impacts in flocculent and granular biomass from SBR systems.
    Gapes D; Wilén BM; Keller J
    Water Sci Technol; 2004; 50(10):203-12. PubMed ID: 15656314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Water Res; 2003 Jun; 37(11):2555-70. PubMed ID: 12753833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-profiles of activated sludge floc determined using microelectrodes.
    Li B; Bishop PL
    Water Res; 2004 Mar; 38(5):1248-58. PubMed ID: 14975658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.