These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 12692316)
41. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Artlip TS; Wisniewski ME; Bassett CL; Norelli JL Tree Physiol; 2013 Aug; 33(8):866-77. PubMed ID: 23956128 [TBL] [Abstract][Full Text] [Related]
42. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves. Wu T; Wang Y; Zheng Y; Fei Z; Dandekar AM; Xu K; Han Z; Cheng L Plant Cell Physiol; 2015 Sep; 56(9):1748-61. PubMed ID: 26076968 [TBL] [Abstract][Full Text] [Related]
43. Carbon autonomy of peach shoots determined by (13)C-photoassimilate transport. Volpe G; Lo Bianco R; Rieger M Tree Physiol; 2008 Dec; 28(12):1805-12. PubMed ID: 19193563 [TBL] [Abstract][Full Text] [Related]
44. Expression of peach sucrose transporters in heterologous systems points out their different physiological role. Zanon L; Falchi R; Hackel A; Kühn C; Vizzotto G Plant Sci; 2015 Sep; 238():262-72. PubMed ID: 26259193 [TBL] [Abstract][Full Text] [Related]
45. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. Shen C; Shi X; Xie C; Li Y; Yang H; Mei X; Xu Y; Dong C J Plant Physiol; 2019 Jan; 232():320-333. PubMed ID: 30553968 [TBL] [Abstract][Full Text] [Related]
46. Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). Ruperti B; Cattivelli L; Pagni S; Ramina A J Exp Bot; 2002 Mar; 53(368):429-37. PubMed ID: 11847241 [TBL] [Abstract][Full Text] [Related]
47. Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening. Falchi R; Cipriani G; Marrazzo T; Nonis A; Vizzotto G; Ruperti B J Exp Bot; 2010 Jun; 61(10):2829-42. PubMed ID: 20501747 [TBL] [Abstract][Full Text] [Related]
48. Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tani E; Polidoros AN; Tsaftaris AS Tree Physiol; 2007 May; 27(5):649-59. PubMed ID: 17267356 [TBL] [Abstract][Full Text] [Related]
49. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Bliss FA; Arulsekar S; Foolad MR; Becerra V; Gillen AM; Warburton ML; Dandekar AM; Kocsisne GM; Mydin KK Genome; 2002 Jun; 45(3):520-9. PubMed ID: 12033621 [TBL] [Abstract][Full Text] [Related]
50. Assessment of Prunus persica fruit softening using a proteomics approach. P RN; Campos-Vargas R; Orellana A J Proteomics; 2012 Feb; 75(5):1618-38. PubMed ID: 22178302 [TBL] [Abstract][Full Text] [Related]
51. Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus L.). Tsukamoto T; Potter D; Tao R; Vieira CP; Vieira J; Iezzoni AF J Exp Bot; 2008; 59(11):3169-85. PubMed ID: 18617504 [TBL] [Abstract][Full Text] [Related]
52. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544 [TBL] [Abstract][Full Text] [Related]
53. Assessment of Sugar Components and Genes Involved in the Regulation of Sucrose Accumulation in Peach Fruit. Vimolmangkang S; Zheng H; Peng Q; Jiang Q; Wang H; Fang T; Liao L; Wang L; He H; Han Y J Agric Food Chem; 2016 Sep; 64(35):6723-9. PubMed ID: 27537219 [TBL] [Abstract][Full Text] [Related]
54. The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth. Testone G; Condello E; Verde I; Nicolodi C; Caboni E; Dettori MT; Vendramin E; Bruno L; Bitonti MB; Mele G; Giannino D J Exp Bot; 2012 Sep; 63(15):5417-35. PubMed ID: 22888130 [TBL] [Abstract][Full Text] [Related]
55. Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance. Kanayama Y; Mizutani R; Yaguchi S; Hojo A; Ikeda H; Nishiyama M; Kanahama K Phytochemistry; 2014 Aug; 104():30-6. PubMed ID: 24837355 [TBL] [Abstract][Full Text] [Related]
56. Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Shakya R; Sturm A Plant Physiol; 1998 Dec; 118(4):1473-80. PubMed ID: 9847123 [TBL] [Abstract][Full Text] [Related]
57. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Wisniewski M; Norelli J; Bassett C; Artlip T; Macarisin D Planta; 2011 May; 233(5):971-83. PubMed ID: 21274560 [TBL] [Abstract][Full Text] [Related]
58. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels. Gabotti D; Negrini N; Morgutti S; Nocito FF; Cocucci M Physiol Plant; 2015 Jul; 154(3):329-48. PubMed ID: 25534876 [TBL] [Abstract][Full Text] [Related]
59. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves. Ni J; Li J; Zhu R; Zhang M; Qi K; Zhang S; Wu J Gene; 2020 Jun; 743():144582. PubMed ID: 32173543 [TBL] [Abstract][Full Text] [Related]
60. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. Conde A; Regalado A; Rodrigues D; Costa JM; Blumwald E; Chaves MM; Gerós H J Exp Bot; 2015 Feb; 66(3):889-906. PubMed ID: 25433029 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]