BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12692350)

  • 1. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE.
    Halliday KJ; Whitelam GC
    Plant Physiol; 2003 Apr; 131(4):1913-20. PubMed ID: 12692350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes.
    Sharrock RA; Clack T; Goosey L
    Plant Mol Biol; 2003 May; 52(1):135-42. PubMed ID: 12825695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis.
    Iñigo S; Alvarez MJ; Strasser B; Califano A; Cerdán PD
    Plant J; 2012 Feb; 69(4):601-12. PubMed ID: 21985558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up Assembly of the Phytochrome Network.
    Sánchez-Lamas M; Lorenzo CD; Cerdán PD
    PLoS Genet; 2016 Nov; 12(11):e1006413. PubMed ID: 27820825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytochrome E influences internode elongation and flowering time in Arabidopsis.
    Devlin PF; Patel SR; Whitelam GC
    Plant Cell; 1998 Sep; 10(9):1479-87. PubMed ID: 9724694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT.
    Halliday KJ; Salter MG; Thingnaes E; Whitelam GC
    Plant J; 2003 Mar; 33(5):875-85. PubMed ID: 12609029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis.
    Hu W; Franklin KA; Sharrock RA; Jones MA; Harmer SL; Lagarias JC
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1542-7. PubMed ID: 23302690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE.
    Clack T; Mathews S; Sharrock RA
    Plant Mol Biol; 1994 Jun; 25(3):413-27. PubMed ID: 8049367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor.
    Clack T; Shokry A; Moffet M; Liu P; Faul M; Sharrock RA
    Plant Cell; 2009 Mar; 21(3):786-99. PubMed ID: 19286967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time.
    Devlin PF; Robson PR; Patel SR; Goosey L; Sharrock RA; Whitelam GC
    Plant Physiol; 1999 Mar; 119(3):909-15. PubMed ID: 10069829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies.
    Hirschfeld M; Tepperman JM; Clack T; Quail PH; Sharrock RA
    Genetics; 1998 Jun; 149(2):523-35. PubMed ID: 9611171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling activities among the Arabidopsis phyB/D/E-type phytochromes: a major role for the central region of the apoprotein.
    Sharrock RA; Clack T; Goosey L
    Plant J; 2003 May; 34(3):317-26. PubMed ID: 12713538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of flowering time by light quality.
    Cerdán PD; Chory J
    Nature; 2003 Jun; 423(6942):881-5. PubMed ID: 12815435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time.
    Devlin PF; Halliday KJ; Harberd NP; Whitelam GC
    Plant J; 1996 Dec; 10(6):1127-34. PubMed ID: 9011093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterodimerization of type II phytochromes in Arabidopsis.
    Sharrock RA; Clack T
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11500-5. PubMed ID: 15273290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling.
    Viczián A; Ádám É; Staudt AM; Lambert D; Klement E; Romero Montepaone S; Hiltbrunner A; Casal J; Schäfer E; Nagy F; Klose C
    New Phytol; 2020 Feb; 225(4):1635-1650. PubMed ID: 31596952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing.
    Aukerman MJ; Hirschfeld M; Wester L; Weaver M; Clack T; Amasino RM; Sharrock RA
    Plant Cell; 1997 Aug; 9(8):1317-26. PubMed ID: 9286109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways.
    Pearce S; Kippes N; Chen A; Debernardi JM; Dubcovsky J
    BMC Plant Biol; 2016 Jun; 16(1):141. PubMed ID: 27329140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification of phytochrome contributions to germination as a function of seed-maturation environment.
    Donohue K; Heschel MS; Butler CM; Barua D; Sharrock RA; Whitelam GC; Chiang GCK
    New Phytol; 2008; 177(2):367-379. PubMed ID: 18028293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.