These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 12692350)
1. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Halliday KJ; Whitelam GC Plant Physiol; 2003 Apr; 131(4):1913-20. PubMed ID: 12692350 [TBL] [Abstract][Full Text] [Related]
2. Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes. Sharrock RA; Clack T; Goosey L Plant Mol Biol; 2003 May; 52(1):135-42. PubMed ID: 12825695 [TBL] [Abstract][Full Text] [Related]
3. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Iñigo S; Alvarez MJ; Strasser B; Califano A; Cerdán PD Plant J; 2012 Feb; 69(4):601-12. PubMed ID: 21985558 [TBL] [Abstract][Full Text] [Related]
4. Bottom-up Assembly of the Phytochrome Network. Sánchez-Lamas M; Lorenzo CD; Cerdán PD PLoS Genet; 2016 Nov; 12(11):e1006413. PubMed ID: 27820825 [TBL] [Abstract][Full Text] [Related]
5. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Devlin PF; Patel SR; Whitelam GC Plant Cell; 1998 Sep; 10(9):1479-87. PubMed ID: 9724694 [TBL] [Abstract][Full Text] [Related]
6. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Halliday KJ; Salter MG; Thingnaes E; Whitelam GC Plant J; 2003 Mar; 33(5):875-85. PubMed ID: 12609029 [TBL] [Abstract][Full Text] [Related]
7. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. Hu W; Franklin KA; Sharrock RA; Jones MA; Harmer SL; Lagarias JC Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1542-7. PubMed ID: 23302690 [TBL] [Abstract][Full Text] [Related]
8. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Clack T; Mathews S; Sharrock RA Plant Mol Biol; 1994 Jun; 25(3):413-27. PubMed ID: 8049367 [TBL] [Abstract][Full Text] [Related]
9. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Clack T; Shokry A; Moffet M; Liu P; Faul M; Sharrock RA Plant Cell; 2009 Mar; 21(3):786-99. PubMed ID: 19286967 [TBL] [Abstract][Full Text] [Related]
10. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Devlin PF; Robson PR; Patel SR; Goosey L; Sharrock RA; Whitelam GC Plant Physiol; 1999 Mar; 119(3):909-15. PubMed ID: 10069829 [TBL] [Abstract][Full Text] [Related]
11. Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Hirschfeld M; Tepperman JM; Clack T; Quail PH; Sharrock RA Genetics; 1998 Jun; 149(2):523-35. PubMed ID: 9611171 [TBL] [Abstract][Full Text] [Related]
12. Signaling activities among the Arabidopsis phyB/D/E-type phytochromes: a major role for the central region of the apoprotein. Sharrock RA; Clack T; Goosey L Plant J; 2003 May; 34(3):317-26. PubMed ID: 12713538 [TBL] [Abstract][Full Text] [Related]
13. Regulation of flowering time by light quality. Cerdán PD; Chory J Nature; 2003 Jun; 423(6942):881-5. PubMed ID: 12815435 [TBL] [Abstract][Full Text] [Related]
14. The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Devlin PF; Halliday KJ; Harberd NP; Whitelam GC Plant J; 1996 Dec; 10(6):1127-34. PubMed ID: 9011093 [TBL] [Abstract][Full Text] [Related]
15. Heterodimerization of type II phytochromes in Arabidopsis. Sharrock RA; Clack T Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11500-5. PubMed ID: 15273290 [TBL] [Abstract][Full Text] [Related]
16. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling. Viczián A; Ádám É; Staudt AM; Lambert D; Klement E; Romero Montepaone S; Hiltbrunner A; Casal J; Schäfer E; Nagy F; Klose C New Phytol; 2020 Feb; 225(4):1635-1650. PubMed ID: 31596952 [TBL] [Abstract][Full Text] [Related]
17. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Aukerman MJ; Hirschfeld M; Wester L; Weaver M; Clack T; Amasino RM; Sharrock RA Plant Cell; 1997 Aug; 9(8):1317-26. PubMed ID: 9286109 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D. Mathews S; McBreen K Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161 [TBL] [Abstract][Full Text] [Related]
19. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. Pearce S; Kippes N; Chen A; Debernardi JM; Dubcovsky J BMC Plant Biol; 2016 Jun; 16(1):141. PubMed ID: 27329140 [TBL] [Abstract][Full Text] [Related]
20. Diversification of phytochrome contributions to germination as a function of seed-maturation environment. Donohue K; Heschel MS; Butler CM; Barua D; Sharrock RA; Whitelam GC; Chiang GCK New Phytol; 2008; 177(2):367-379. PubMed ID: 18028293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]