BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12692670)

  • 1. Cellular distribution of lens epithelium-derived growth factor (LEDGF) in the rat eye: loss of LEDGF from nuclei of differentiating cells.
    Kubo E; Singh DP; Fatma N; Shinohara T; Zelenka P; Reddy VN; Chylack LT
    Histochem Cell Biol; 2003 Apr; 119(4):289-99. PubMed ID: 12692670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparin's roles in stabilizing, potentiating, and transporting LEDGF into the nucleus.
    Fatma N; Singh DP; Shinohara T; Chylack LT
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2648-57. PubMed ID: 10937578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lens epithelium-derived growth factor: increased resistance to thermal and oxidative stresses.
    Singh DP; Ohguro N; Chylack LT; Shinohara T
    Invest Ophthalmol Vis Sci; 1999 Jun; 40(7):1444-51. PubMed ID: 10359326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and differentiation of human lens epithelial cells in vitro on matrix.
    Blakely EA; Bjornstad KA; Chang PY; McNamara MP; Chang E; Aragon G; Lin SP; Lui G; Polansky JR
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3898-907. PubMed ID: 11053292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts.
    Singh DP; Ohguro N; Kikuchi T; Sueno T; Reddy VN; Yuge K; Chylack LT; Shinohara T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):373-81. PubMed ID: 10623627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification.
    Awasthi N; Wagner BJ
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4482-9. PubMed ID: 17003443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feline ocular epithelial response to growth factors in vitro.
    Wong CJ; Peiffer RL; Oglesbee S; Osborne C
    Am J Vet Res; 1996 Dec; 57(12):1748-52. PubMed ID: 8950429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of heavy subunit chain of gamma-glutamylcysteine synthetase by tumor necrosis factor-alpha in lens epithelial cells: role of LEDGF/p75.
    Takamura Y; Fatma N; Kubo E; Singh DP
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C554-66. PubMed ID: 16403949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of partner of inscuteable (mPins) expression in the developing mouse eye.
    Raji B; Dansault A; Vieira V; de la Houssaye G; Lacassagne E; Kobetz A; Arbogast L; Dufier JL; Blumer JB; Menasche M; Abitbol M
    Mol Vis; 2008; 14():2575-96. PubMed ID: 19122831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LEDGF regulation of alcohol and aldehyde dehydrogenases in lens epithelial cells: stimulation of retinoic acid production and protection from ethanol toxicity.
    Fatma N; Kubo E; Chylack LT; Shinohara T; Akagi Y; Singh DP
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C508-16. PubMed ID: 15238362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens epithelium-derived growth factor relieves transforming growth factor-beta1-induced transcription repression of heat shock proteins in human lens epithelial cells.
    Sharma P; Fatma N; Kubo E; Shinohara T; Chylack LT; Singh DP
    J Biol Chem; 2003 May; 278(22):20037-46. PubMed ID: 12649267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth factors involved in aqueous humour-induced lens cell proliferation.
    Iyengar L; Patkunanathan B; McAvoy JW; Lovicu FJ
    Growth Factors; 2009 Feb; 27(1):50-62. PubMed ID: 19085197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of FGF-1 and FGF-2 mRNA during lens morphogenesis, differentiation and growth.
    Lovicu FJ; de Iongh RU; McAvoy JW
    Curr Eye Res; 1997 Mar; 16(3):222-30. PubMed ID: 9088738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens epithelium-derived growth factor (LEDGF/p75) expression in fetal and adult human brain.
    Chylack LT; Fu L; Mancini R; Martin-Rehrmann MD; Saunders AJ; Konopka G; Tian D; Hedley-Whyte ET; Folkerth RD; Goldstein LE
    Exp Eye Res; 2004 Dec; 79(6):941-8. PubMed ID: 15642333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and culture of rat lens epithelial explants for studying terminal differentiation.
    Zelenka PS; Gao CY; Saravanamuthu SS
    J Vis Exp; 2009 Sep; (31):. PubMed ID: 19773734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of fibroblast growth factor in eye lens development.
    McAvoy JW; Chamberlain CG; de Iongh RU; Richardson NA; Lovicu FJ
    Ann N Y Acad Sci; 1991; 638():256-74. PubMed ID: 1723855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens epithelial cells.
    Lee EH; Joo CK
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2025-32. PubMed ID: 10440257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IGF-1 enhancement of FGF-induced lens fiber differentiation in rats of different ages.
    Richardson NA; Chamberlain CG; McAvoy JW
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3303-12. PubMed ID: 8225865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveolin-1 is up-regulated in transdifferentiated lens epithelial cells but minimal in normal human and murine lenses.
    Perdue N; Yan Q
    Exp Eye Res; 2006 Nov; 83(5):1154-61. PubMed ID: 16914142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization.
    Ogata N; Wada M; Otsuji T; Jo N; Tombran-Tink J; Matsumura M
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1168-75. PubMed ID: 11923262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.