BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12693036)

  • 1. Selective nitration of Tyr99 in calmodulin as a marker of cellular conditions of oxidative stress.
    Smallwood HS; Galeva NA; Bartlett RK; Urbauer RJ; Williams TD; Urbauer JL; Squier TC
    Chem Res Toxicol; 2003 Jan; 16(1):95-102. PubMed ID: 12693036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.
    Yao Y; Yin D; Jas GS; Kuczer K; Williams TD; Schöneich C; Squier TC
    Biochemistry; 1996 Feb; 35(8):2767-87. PubMed ID: 8611584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase.
    Bartlett RK; Bieber Urbauer RJ; Anbanandam A; Smallwood HS; Urbauer JL; Squier TC
    Biochemistry; 2003 Mar; 42(11):3231-8. PubMed ID: 12641454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of constitutive nitric oxide synthases by oxidized calmodulin mutants.
    Montgomery HJ; Bartlett R; Perdicakis B; Jervis E; Squier TC; Guillemette JG
    Biochemistry; 2003 Jul; 42(25):7759-68. PubMed ID: 12820885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite.
    Batthyány C; Souza JM; Durán R; Cassina A; Cerveñansky C; Radi R
    Biochemistry; 2005 Jun; 44(22):8038-46. PubMed ID: 15924423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase.
    Gao J; Yin D; Yao Y; Williams TD; Squier TC
    Biochemistry; 1998 Jun; 37(26):9536-48. PubMed ID: 9649337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin.
    Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ
    Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxynitrite reduction of calmodulin stimulation of neuronal nitric oxide synthase.
    Hühmer AF; Gerber NC; de Montellano PR; Schöneich C
    Chem Res Toxicol; 1996 Mar; 9(2):484-91. PubMed ID: 8839053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration.
    Görg B; Qvartskhava N; Voss P; Grune T; Häussinger D; Schliess F
    FEBS Lett; 2007 Jan; 581(1):84-90. PubMed ID: 17174954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine phosphorylation/dephosphorylation regulates peroxynitrite-mediated peptide nitration.
    Shi WQ; Cai H; Xu DD; Su XY; Lei P; Zhao YF; Li YM
    Regul Pept; 2007 Dec; 144(1-3):1-5. PubMed ID: 17669515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxynitrite treatment in vitro disables catalytic activity of recombinant p38 MAPK.
    Webster RP; Macha S; Brockman D; Myatt L
    Proteomics; 2006 Sep; 6(17):4838-44. PubMed ID: 16878296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zingerone as an antioxidant against peroxynitrite.
    Shin SG; Kim JY; Chung HY; Jeong JC
    J Agric Food Chem; 2005 Sep; 53(19):7617-22. PubMed ID: 16159194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-selective nitration of tyrosine in human serum albumin by peroxynitrite.
    Jiao K; Mandapati S; Skipper PL; Tannenbaum SR; Wishnok JS
    Anal Biochem; 2001 Jun; 293(1):43-52. PubMed ID: 11373077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxynitrite-dependent tryptophan nitration.
    Alvarez B; Rubbo H; Kirk M; Barnes S; Freeman BA; Radi R
    Chem Res Toxicol; 1996 Mar; 9(2):390-6. PubMed ID: 8839040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxynitrite-dependent modifications of tyrosine residues in hemoglobin. Formation of tyrosyl radical(s) and 3-nitrotyrosine.
    Pietraforte D; Salzano AM; Marino G; Minetti M
    Amino Acids; 2003 Dec; 25(3-4):341-50. PubMed ID: 14661095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants.
    Chen HJ; Chang CM; Lin WP; Cheng DL; Leong MI
    Chembiochem; 2008 Jan; 9(2):312-23. PubMed ID: 18161731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester to red blood cell membranes to study peroxynitrite-dependent reactions.
    Romero N; Peluffo G; Bartesaghi S; Zhang H; Joseph J; Kalyanaraman B; Radi R
    Chem Res Toxicol; 2007 Nov; 20(11):1638-48. PubMed ID: 17941688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitration and hydroxylation of phenolic compounds by peroxynitrite.
    Ramezanian MS; Padmaja S; Koppenol WH
    Chem Res Toxicol; 1996; 9(1):232-40. PubMed ID: 8924596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.