BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 12693714)

  • 1. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.
    Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L
    Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gárdos effect in human red blood cells.
    Varecka L; Peterajová E; Písová E
    FEBS Lett; 1998 Aug; 433(1-2):157-60. PubMed ID: 9738952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadate changes Ca2+ influx pathway properties in human red blood cells.
    Varecka L; Peterajová E; Sevcík J
    Gen Physiol Biophys; 1997 Dec; 16(4):359-72. PubMed ID: 9595304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-activated K+ channel and the activation of Ca2+ influx in vanadate-treated red blood cells.
    Varecka L; Peterajová E; Sevcík J
    Gen Physiol Biophys; 1997 Dec; 16(4):339-57. PubMed ID: 9595303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reincorporated plasma membrane Ca2+-ATPase can mediate B-Type Ca2+ channels observed in native membrane of human red blood cells.
    Pinet C; Antoine S; Filoteo AG; Penniston JT; Coulombe A
    J Membr Biol; 2002 Jun; 187(3):185-201. PubMed ID: 12163977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum.
    Mandal PK; Mandal A; Ahearn GA
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):515-26. PubMed ID: 15945071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx.
    Simonsen LO; Harbak H; Bennekou P
    Blood Cells Mol Dis; 2011 Dec; 47(4):214-25. PubMed ID: 21962619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vanadate-induced Ca(2+) and Co(2+) uptake in human red blood cells.
    Bennekou P; Harbak H; Simonsen LO
    Blood Cells Mol Dis; 2012 Feb; 48(2):102-9. PubMed ID: 22137504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymyxin B, a novel inhibitor of red cell Ca2+-activated K+ channel.
    Varecka L; Peterajová E; Pogády J
    FEBS Lett; 1987 Dec; 225(1-2):173-7. PubMed ID: 2446920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of prostaglandin F2 alpha on Ca2+ influx in osteoblast-like cells: function of tyrosine kinase.
    Suzuki A; Kozawa O; Saito H; Oiso Y
    J Cell Biochem; 1994 Apr; 54(4):487-93. PubMed ID: 8014198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic regulation of native Ca2+- and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate.
    Csanády L; Adam-Vizi V
    J Gen Physiol; 2004 Jun; 123(6):743-57. PubMed ID: 15173222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin-induced induction of the NO/cGMP pathway depends on Ca2+-activated K+ channel-induced hyperpolarization-mediated Ca2+-entry into cultured human endothelial cells.
    Kuhlmann CR; Schaefer CA; Kosok C; Abdallah Y; Walther S; Lüdders DW; Neumann T; Tillmanns H; Schäfer C; Piper HM; Erdogan A
    Planta Med; 2005 Jun; 71(6):520-4. PubMed ID: 15971122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genistein inhibits Ca2+ influx by extracellular ATP in PC12 pheochromocytoma cells.
    Kozawa O; Shinoda J; Suzuki A
    Horm Metab Res; 1995 Jun; 27(6):272-4. PubMed ID: 7557837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the ionic strength and prostaglandin E2 on the free Ca2+ concentration and the Ca2+ influx in human red blood cells.
    Kucherenko YV; Weiss E; Bernhardt I
    Bioelectrochemistry; 2004 May; 62(2):127-33. PubMed ID: 15039015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic activation of mitogen-activated protein kinase by insulin and adenosine triphosphate in liver cells: permissive role of Ca2+.
    Haddad PS; Vallerand D; Mathé L; Benzeroual K; Van de Werve G
    Metabolism; 2003 May; 52(5):590-8. PubMed ID: 12759889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purinergic receptor-induced changes in paracellular resistance across cultures of human cervical cells are mediated by two distinct cytosolic calcium-related mechanisms.
    Gorodeski GI; Hopfer U; Jin W
    Cell Biochem Biophys; 1998; 29(3):281-306. PubMed ID: 9868583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine triphosphate, bradykinin, and thyrotropin-releasing hormone regulate the intracellular Ca2+ concentration and the 45Ca2+ efflux of human thyrocytes in primary culture.
    Raspé E; Andry G; Dumont JE
    J Cell Physiol; 1989 Sep; 140(3):608-14. PubMed ID: 2506191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cell ageing on Ca2+ influx into human red cells.
    Romero PJ; Romero EA
    Cell Calcium; 1999; 26(3-4):131-7. PubMed ID: 10598277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purinergic (ATP) signaling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases.
    Katz S; Boland R; Santillán G
    Arch Biochem Biophys; 2008 Sep; 477(2):244-52. PubMed ID: 18625195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.