BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12693946)

  • 1. Quaternary structure dependence of kinetic hole burning and conformational substates interconversion in hemoglobin.
    Levantino M; Cupane A; Zimányi L
    Biochemistry; 2003 Apr; 42(15):4499-505. PubMed ID: 12693946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic markers of the T<-->R quaternary transition in human hemoglobin.
    Schirò G; Cammarata M; Levantino M; Cupane A
    Biophys Chem; 2005 Apr; 114(1):27-33. PubMed ID: 15792858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformational and dynamic basis for ligand binding reactivity in hemoglobin Ypsilanti (beta 99 asp-->Tyr): origin of the quaternary enhancement effect.
    Huang J; Juszczak LJ; Peterson ES; Shannon CF; Yang M; Huang S; Vidugiris GV; Friedman JM
    Biochemistry; 1999 Apr; 38(14):4514-25. PubMed ID: 10194373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes.
    Huang J; Ridsdale A; Wang J; Friedman JM
    Biochemistry; 1997 Nov; 36(47):14353-65. PubMed ID: 9398153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-induced tertiary relaxations during the T-to-R quaternary transition in hemoglobin.
    Ronda L; Abbruzzetti S; Bruno S; Bettati S; Mozzarelli A; Viappiani C
    J Phys Chem B; 2008 Oct; 112(40):12790-4. PubMed ID: 18783270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quaternary relaxations in sol-gel encapsulated hemoglobin studied via NIR and UV spectroscopy.
    Schiro G; Cupane A
    Biochemistry; 2007 Oct; 46(41):11568-76. PubMed ID: 17880111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosecond step-scan FTIR spectroscopy of hemoglobin: ligand recombination and protein conformational changes.
    Hu X; Frei H; Spiro TG
    Biochemistry; 1996 Oct; 35(40):13001-5. PubMed ID: 8855934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent effects on conformational dynamics of Zn-substituted myoglobin observed by time-resolved hole-burning spectroscopy.
    Shibata Y; Kurita A; Kushida T
    Biochemistry; 1999 Feb; 38(6):1789-801. PubMed ID: 10026259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 1. Microstate linear free energy relations.
    Goldbeck RA; Esquerra RM; Holt JM; Ackers GK; Kliger DS
    Biochemistry; 2004 Sep; 43(38):12048-64. PubMed ID: 15379545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependent quaternary state relaxation in sol-gel encapsulated hemoglobin.
    Das TK; Khan I; Rousseau DL; Friedman JM
    Biospectroscopy; 1999; 5(5 Suppl):S64-70. PubMed ID: 10512539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels.
    Samuni U; Dantsker D; Juszczak LJ; Bettati S; Ronda L; Mozzarelli A; Friedman JM
    Biochemistry; 2004 Nov; 43(43):13674-82. PubMed ID: 15504030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
    Caronna C; Natali F; Cupane A
    Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can a two-state MWC allosteric model explain hemoglobin kinetics?
    Henry ER; Jones CM; Hofrichter J; Eaton WA
    Biochemistry; 1997 May; 36(21):6511-28. PubMed ID: 9174369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric intermediates in hemoglobin. 1. Nanosecond time-resolved circular dichroism spectroscopy.
    Björling SC; Goldbeck RA; Paquette SJ; Milder SJ; Kliger DS
    Biochemistry; 1996 Jul; 35(26):8619-27. PubMed ID: 8679624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric intermediates in hemoglobin. 2. Kinetic modeling of HbCO photolysis.
    Goldbeck RA; Paquette SJ; Björling SC; Kliger DS
    Biochemistry; 1996 Jul; 35(26):8628-39. PubMed ID: 8679625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric hemoglobin hybrids.
    Marden MC; Griffon N; Poyart C
    J Mol Biol; 1996 Oct; 263(1):90-7. PubMed ID: 8890915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin.
    Safo MK; Abraham DJ
    Biochemistry; 2005 Jun; 44(23):8347-59. PubMed ID: 15938624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 2. Cooperative free energies of (alphaFeCObetaFe)2 and (alphaFebetaFeCO)2 T-state tetramers.
    Goldbeck RA; Esquerra RM; Kliger DS; Holt JM; Ackers GK
    Biochemistry; 2004 Sep; 43(38):12065-80. PubMed ID: 15379546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling.
    Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG
    J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric (deoxy dimer/azido-met dimer) hemoglobin hybrids dissociate within seconds.
    Kiger L; Marden MC
    J Mol Biol; 1999 Aug; 291(1):227-36. PubMed ID: 10438617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.