BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12693952)

  • 21. Stability of a homo-dimeric Ca(2+)-binding member of the beta gamma-crystallin superfamily: DSC measurements on spherulin 3a from Physarum polycephalum.
    Kretschmar M; Jaenicke R
    J Mol Biol; 1999 Sep; 291(5):1147-53. PubMed ID: 10518950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and tissue expression of the mouse ortholog of AIM1, a betagamma-crystallin superfamily member.
    Teichmann U; Ray ME; Ellison J; Graham C; Wistow G; Meltzer PS; Trent JM; Pavan WJ
    Mamm Genome; 1998 Sep; 9(9):715-20. PubMed ID: 9716656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divalent Cations and the Divergence of
    Roskamp KW; Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2019 Nov; 58(45):4505-4518. PubMed ID: 31647219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and thermodynamic stabilization of the betagamma-crystallin homolog spherulin 3a from Physarum polycephalum by calcium binding.
    Kretschmar M; Mayr EM; Jaenicke R
    J Mol Biol; 1999 Jun; 289(4):701-5. PubMed ID: 10369756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the sequence-structure-function relationship for the intrinsically disordered βγ-crystallin Hahellin.
    Gao M; Yang F; Zhang L; Su Z; Huang Y
    J Biomol Struct Dyn; 2018 Apr; 36(5):1171-1181. PubMed ID: 28393629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone.
    Evans P; Slingsby C; Wallace BA
    Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The betagamma-crystallin superfamily contains a universal motif for binding calcium.
    Aravind P; Mishra A; Suman SK; Jobby MK; Sankaranarayanan R; Sharma Y
    Biochemistry; 2009 Dec; 48(51):12180-90. PubMed ID: 19921810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress.
    Ma Z; Piszczek G; Wingfield PT; Sergeev YV; Hejtmancik JF
    Biochemistry; 2009 Aug; 48(30):7334-41. PubMed ID: 19558189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin.
    Mills IA; Flaugh SL; Kosinski-Collins MS; King JA
    Protein Sci; 2007 Nov; 16(11):2427-44. PubMed ID: 17905830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins.
    Raman R; Rajanikanth V; Palaniappan RU; Lin YP; He H; McDonough SP; Sharma Y; Chang YF
    PLoS One; 2010 Dec; 5(12):e14377. PubMed ID: 21206924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding the molecular design principles underlying Ca(2+) binding to βγ-crystallin motifs.
    Mishra A; Suman SK; Srivastava SS; Sankaranarayanan R; Sharma Y
    J Mol Biol; 2012 Jan; 415(1):75-91. PubMed ID: 22099475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calorimetric analysis of the Ca(2+)-binding betagamma-crystallin homolog protein S from Myxococcus xanthus: intrinsic stability and mutual stabilization of domains.
    Wenk M; Jaenicke R
    J Mol Biol; 1999 Oct; 293(1):117-24. PubMed ID: 10512720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disability for function: loss of Ca(2+)-binding is obligatory for fitness of mammalian βγ-crystallins.
    Suman SK; Mishra A; Yeramala L; Rastogi ID; Sharma Y
    Biochemistry; 2013 Dec; 52(50):9047-58. PubMed ID: 24251594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial βγ-crystallins.
    Mishra A; Krishnan B; Srivastava SS; Sharma Y
    Prog Biophys Mol Biol; 2014 Jul; 115(1):42-51. PubMed ID: 24594023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iterative cloning, overexpression, purification and isotopic labeling of an engineered dimer of a Ca(2+)-binding protein of the βγ-crystallin superfamily from Methanosarcina acetivorans.
    Ramanujam V; Chary KV; Ainavarapu SR
    Protein Expr Purif; 2012 Jul; 84(1):116-22. PubMed ID: 22579642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary remodeling of βγ-crystallins for domain stability at cost of Ca2+ binding.
    Suman SK; Mishra A; Ravindra D; Yeramala L; Sharma Y
    J Biol Chem; 2011 Dec; 286(51):43891-43901. PubMed ID: 21949186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gamma S-crystallin of bovine and human eye lens: solution structure, stability and folding of the intact two-domain protein and its separate domains.
    Wenk M; Herbst R; Hoeger D; Kretschmar M; Lubsen NH; Jaenicke R
    Biophys Chem; 2000 Aug; 86(2-3):95-108. PubMed ID: 11026675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unfolding crystallins: the destabilizing role of a beta-hairpin cysteine in betaB2-crystallin by simulation and experiment.
    MacDonald JT; Purkiss AG; Smith MA; Evans P; Goodfellow JM; Slingsby C
    Protein Sci; 2005 May; 14(5):1282-92. PubMed ID: 15840832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The importance of the last strand at the C-terminus in βB2-crystallin stability and assembly.
    Zhang K; Zhao WJ; Leng XY; Wang S; Yao K; Yan YB
    Biochim Biophys Acta; 2014 Jan; 1842(1):44-55. PubMed ID: 24120835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.