These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 12693969)
1. Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Viejo-Díaz M; Andrés MT; Pérez-Gil J; Sánchez M; Fierro JF Biochemistry (Mosc); 2003 Feb; 68(2):217-27. PubMed ID: 12693969 [TBL] [Abstract][Full Text] [Related]
2. Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes. Aguilera O; Ostolaza H; Quirós LM; Fierro JF FEBS Lett; 1999 Dec; 462(3):273-7. PubMed ID: 10622710 [TBL] [Abstract][Full Text] [Related]
3. Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1. Viejo-Díaz M; Andrés MT; Fierro JF Antimicrob Agents Chemother; 2005 Jul; 49(7):2583-8. PubMed ID: 15980323 [TBL] [Abstract][Full Text] [Related]
4. Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111. Chapple DS; Mason DJ; Joannou CL; Odell EW; Gant V; Evans RW Infect Immun; 1998 Jun; 66(6):2434-40. PubMed ID: 9596699 [TBL] [Abstract][Full Text] [Related]
5. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. Han FF; Gao YH; Luan C; Xie YG; Liu YF; Wang YZ J Dairy Sci; 2013 Jun; 96(6):3471-87. PubMed ID: 23567049 [TBL] [Abstract][Full Text] [Related]
6. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Matsuzaki K; Sugishita K; Harada M; Fujii N; Miyajima K Biochim Biophys Acta; 1997 Jul; 1327(1):119-30. PubMed ID: 9247173 [TBL] [Abstract][Full Text] [Related]
7. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. Ulvatne H; Haukland HH; Olsvik O; Vorland LH FEBS Lett; 2001 Mar; 492(1-2):62-5. PubMed ID: 11248238 [TBL] [Abstract][Full Text] [Related]
8. Transferrins selectively cause ion efflux through bacterial and artificial membranes. Aguilera O; Quiros LM; Fierro JF FEBS Lett; 2003 Jul; 548(1-3):5-10. PubMed ID: 12885398 [TBL] [Abstract][Full Text] [Related]
9. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Sun Y; Dong W; Sun L; Ma L; Shang D Biomaterials; 2015 Jan; 37():299-311. PubMed ID: 25453959 [TBL] [Abstract][Full Text] [Related]
10. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related]
11. Influence of truncation of avian β-defensin-4 on biological activity and peptide-membrane interaction. Dong N; Ma QQ; Shan AS; Wang L; Sun WY; Li YZ Protein Pept Lett; 2012 Apr; 19(4):430-8. PubMed ID: 22316306 [TBL] [Abstract][Full Text] [Related]
12. Effects of lactoferrin derived peptides on simulants of biological warfare agents. Sijbrandij T; Ligtenberg AJ; Nazmi K; Veerman EC; Bolscher JG; Bikker FJ World J Microbiol Biotechnol; 2017 Jan; 33(1):3. PubMed ID: 27832504 [TBL] [Abstract][Full Text] [Related]
13. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Bolscher JG; Adão R; Nazmi K; van den Keybus PA; van 't Hof W; Nieuw Amerongen AV; Bastos M; Veerman EC Biochimie; 2009 Jan; 91(1):123-32. PubMed ID: 18573310 [TBL] [Abstract][Full Text] [Related]
14. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
15. The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Linge HM; Collin M; Nordenfelt P; Mörgelin M; Malmsten M; Egesten A Antimicrob Agents Chemother; 2008 Jul; 52(7):2599-607. PubMed ID: 18443119 [TBL] [Abstract][Full Text] [Related]
16. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
17. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Shang D; Zhang Q; Dong W; Liang H; Bi X Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205 [TBL] [Abstract][Full Text] [Related]
18. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Shin SY; Kang JH; Jang SY; Kim Y; Kim KL; Hahm KS Biochim Biophys Acta; 2000 Feb; 1463(2):209-18. PubMed ID: 10675500 [TBL] [Abstract][Full Text] [Related]
19. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
20. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Hao G; Shi YH; Tang YL; Le GW Peptides; 2009 Aug; 30(8):1421-7. PubMed ID: 19467281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]