BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 12694396)

  • 1. A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma.
    Satchell MA; Zhang X; Kochanek PM; Dixon CE; Jenkins LW; Melick J; Szabó C; Clark RS
    J Neurochem; 2003 May; 85(3):697-708. PubMed ID: 12694396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury.
    Lai Y; Chen Y; Watkins SC; Nathaniel PD; Guo F; Kochanek PM; Jenkins LW; Szabó C; Clark RS
    J Neurochem; 2008 Mar; 104(6):1700-11. PubMed ID: 17996029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local administration of the poly(ADP-ribose) polymerase inhibitor INO-1001 prevents NAD+ depletion and improves water maze performance after traumatic brain injury in mice.
    Clark RS; Vagni VA; Nathaniel PD; Jenkins LW; Dixon CE; Szabó C
    J Neurotrauma; 2007 Aug; 24(8):1399-405. PubMed ID: 17711401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of cognitive and motor deficits after traumatic brain injury in mice deficient in poly(ADP-ribose) polymerase.
    Whalen MJ; Clark RS; Dixon CE; Robichaud P; Marion DW; Vagni V; Graham SH; Virag L; Hasko G; Stachlewitz R; Szabo C; Kochanek PM
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):835-42. PubMed ID: 10458590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in the function and regulation of ADP-Ribosylation.
    Hottiger MO; Boothby M; Koch-Nolte F; Lüscher B; Martin NM; Plummer R; Wang ZQ; Ziegler M
    Sci Signal; 2011 May; 4(174):mr5. PubMed ID: 21610250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress.
    Du L; Zhang X; Han YY; Burke NA; Kochanek PM; Watkins SC; Graham SH; Carcillo JA; Szabó C; Clark RS
    J Biol Chem; 2003 May; 278(20):18426-33. PubMed ID: 12626504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase.
    Endres M; Wang ZQ; Namura S; Waeber C; Moskowitz MA
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1143-51. PubMed ID: 9390645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight.
    Hopp AK; Hottiger MO
    Cells; 2021 Mar; 10(3):. PubMed ID: 33808662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of poly(ADP-ribose) polymerase catalysis; mono-ADP-ribosylation of poly(ADP-ribose) polymerase at nanomolar concentrations of NAD.
    Bauer PI; Hakam A; Kun E
    FEBS Lett; 1986 Jan; 195(1-2):331-8. PubMed ID: 2935422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of 3T3-L1 pre-adipocytes induced by inhibitors of poly(ADP-ribose) polymerase and by related noninhibitory acids.
    Janssen OE; Hilz H
    Eur J Biochem; 1989 Apr; 180(3):595-602. PubMed ID: 2523799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced ADP-ribosylation and its diminution by lipoamide after ischemia-reperfusion in perfused rat heart.
    Szabados E; Fischer GM; Gallyas F; Kispal G; Sumegi B
    Free Radic Biol Med; 1999 Nov; 27(9-10):1103-13. PubMed ID: 10569643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia.
    Iwashita A; Tojo N; Matsuura S; Yamazaki S; Kamijo K; Ishida J; Yamamoto H; Hattori K; Matsuoka N; Mutoh S
    J Pharmacol Exp Ther; 2004 Aug; 310(2):425-36. PubMed ID: 15075382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.
    Gibson BA; Zhang Y; Jiang H; Hussey KM; Shrimp JH; Lin H; Schwede F; Yu Y; Kraus WL
    Science; 2016 Jul; 353(6294):45-50. PubMed ID: 27256882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of GTP/T alpha-dependent activation of cGMP phosphodiesterase by ADP-ribosylation by its gamma subunit in amphibian rod photoreceptor membranes.
    Bondarenko VA; Yamazaki M; Hayashi F; Yamazaki A
    Biochemistry; 1999 Jun; 38(24):7755-63. PubMed ID: 10387015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
    Heer CD; Sanderson DJ; Voth LS; Alhammad YMO; Schmidt MS; Trammell SAJ; Perlman S; Cohen MS; Fehr AR; Brenner C
    J Biol Chem; 2020 Dec; 295(52):17986-17996. PubMed ID: 33051211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria.
    Jorcke D; Ziegler M; Herrero-Yraola A; Schweiger M
    Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):189-93. PubMed ID: 9576867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ADP-ribosylation) and apoptosis.
    Scovassi AI; Poirier GG
    Mol Cell Biochem; 1999 Sep; 199(1-2):125-37. PubMed ID: 10544961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Clickable NAD
    Zhang L; Lin H
    Methods Mol Biol; 2017; 1608():95-109. PubMed ID: 28695506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting and Quantifying pADPr In Vivo.
    Lai YC; Aneja RK; Satchell MA; Clark RSB
    Methods Mol Biol; 2017; 1608():27-43. PubMed ID: 28695501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP-ribosylation of proteins in Bacillus subtilis and its possible importance in sporulation.
    Huh JW; Shima J; Ochi K
    J Bacteriol; 1996 Aug; 178(16):4935-41. PubMed ID: 8759858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.