BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 12694396)

  • 21. Detecting and Quantifying pADPr In Vivo.
    Lamade AM; Chen Y; Johnson CJ; Bayır H; Clark RSB
    Methods Mol Biol; 2023; 2609():23-42. PubMed ID: 36515827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible mono-ADP-ribosylation of DNA breaks.
    Munnur D; Ahel I
    FEBS J; 2017 Dec; 284(23):4002-4016. PubMed ID: 29054115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of chronic alcohol consumption on hepatic poly-ADP-ribosylation in the rat.
    Nomura F; Yaguchi M; Itoga And S; Noda M
    Alcohol Clin Exp Res; 2001 Jun; 25(6 Suppl):35S-8S. PubMed ID: 11410739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeoxyNAD and deoxyADP-ribosylation of proteins.
    Alvarez-Gonzalez R
    Mol Cell Biochem; 1994 Sep; 138(1-2):213-9. PubMed ID: 7898466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of poly (ADP-ribose) synthetase by gene disruption or inhibition with 5-iodo-6-amino-1,2-benzopyrone protects mice from multiple-low-dose-streptozotocin-induced diabetes.
    Mabley JG; Suarez-Pinzon WL; Haskó G; Salzman AL; Rabinovitch A; Kun E; Szabó C
    Br J Pharmacol; 2001 Jul; 133(6):909-19. PubMed ID: 11454665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting and quantifying pADPr in vivo.
    Lai YC; Aneja RK; Satchell MA; Clark RS
    Methods Mol Biol; 2011; 780():117-34. PubMed ID: 21870258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.
    Gariani K; Ryu D; Menzies KJ; Yi HS; Stein S; Zhang H; Perino A; Lemos V; Katsyuba E; Jha P; Vijgen S; Rubbia-Brandt L; Kim YK; Kim JT; Kim KS; Shong M; Schoonjans K; Auwerx J
    J Hepatol; 2017 Jan; 66(1):132-141. PubMed ID: 27663419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD+ as a metabolic link between DNA damage and cell death.
    Ying W; Alano CC; Garnier P; Swanson RA
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):216-23. PubMed ID: 15562437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes.
    Wigle TJ; Church WD; Majer CR; Swinger KK; Aybar D; Schenkel LB; Vasbinder MM; Brendes A; Beck C; Prahm M; Wegener D; Chang P; Kuntz KW
    SLAS Discov; 2020 Mar; 25(3):241-252. PubMed ID: 31855104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SnapShot: ADP-Ribosylation Signaling.
    Hottiger MO
    Mol Cell; 2015 Jun; 58(6):1134-1134.e1. PubMed ID: 26091348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myocardial ischemic preconditioning in rodents is dependent on poly (ADP-ribose) synthetase.
    Liaudet L; Yang Z; Al-Affar EB; Szabó C
    Mol Med; 2001 Jun; 7(6):406-17. PubMed ID: 11474134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective probing of ADP-ribosylation reactions with oxidized 2'-deoxy-nicotinamide adenine dinucleotide.
    Alvarez-Gonzalez R; Moss J; Niedergang C; Althaus FR
    Biochemistry; 1988 Jul; 27(14):5378-83. PubMed ID: 3139033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implication of poly (ADP-ribose) polymerase (PARP) in neurodegeneration and brain energy metabolism. Decreases in mouse brain NAD+ and ATP caused by MPTP are prevented by the PARP inhibitor benzamide.
    Cosi C; Marien M
    Ann N Y Acad Sci; 1999; 890():227-39. PubMed ID: 10668429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(ADP-ribosyl)ation enhancement in brain cell nuclei is associated with diabetic neuropathy.
    Kuchmerovska T; Shymanskyy I; Donchenko G; Kuchmerovskyy M; Pakirbaieva L; Klimenko A
    J Diabetes Complications; 2004; 18(4):198-204. PubMed ID: 15207836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of poly(ADP-ribose) polymerase activation in oxidatively stressed cells and tissues using biotinylated NAD substrate.
    Bakondi E; Bai P; Szabó E E; Hunyadi J; Gergely P; Szabó C; Virág L
    J Histochem Cytochem; 2002 Jan; 50(1):91-8. PubMed ID: 11748298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms governing PARP expression, localization, and activity in cells.
    Sanderson DJ; Cohen MS
    Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):541-554. PubMed ID: 32962438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of ADP-ribosylated integrin alpha 7 in skeletal muscle myotubes.
    Zolkiewska A; Moss J
    J Biol Chem; 1995 Apr; 270(16):9227-33. PubMed ID: 7721841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease of bull seminal plasma induced by ADP-ribosylation.
    Tanaka Y; Yoshihara K; Itaya A; Kamiya T; Koide SS
    J Biol Chem; 1984 May; 259(10):6579-85. PubMed ID: 6327687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exposure to fluoride exacerbates the cognitive deficit of diabetic patients living in areas with endemic fluorosis, as well as of rats with type 2 diabetes induced by streptozotocin via a mechanism that may involve excessive activation of the poly(ADP ribose) polymerase-1/P53 pathway.
    Xiang J; Qi XL; Cao K; Ran LY; Zeng XX; Xiao X; Liao W; He WW; Hong W; He Y; Guan ZZ
    Sci Total Environ; 2024 Feb; 912():169512. PubMed ID: 38145685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.