BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12694721)

  • 41. Characterization of a kinin inactivating serine endopeptidase H2 (kininase) from human urine using fluorogenic substrates.
    Quinto BM; Juliano L; Juliano M; Carmona AK; Stella RC; Casarini DE
    Immunopharmacology; 1999 Dec; 45(1-3):223-8. PubMed ID: 10615015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substrate specificity of human cathepsin D using internally quenched fluorescent peptides derived from reactive site loop of kallistatin.
    Pimenta DC; Oliveira A; Juliano MA; Juliano L
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):113-22. PubMed ID: 11341921
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of pepstatin-sensitive carboxyl proteases by using pepstatinyldansyldiaminopropane (dansyl-pepstatin) as an active site titrant.
    Yonezawa H; Uchikoba T; Kaneda M
    J Biochem; 1997 Aug; 122(2):294-9. PubMed ID: 9378705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. S3 to S3' subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates.
    Alves MF; Puzer L; Cotrin SS; Juliano MA; Juliano L; Brömme D; Carmona AK
    Biochem J; 2003 Aug; 373(Pt 3):981-6. PubMed ID: 12733990
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of the pepsin activity in human gastric juice, using defined oligopeptides as substrates.
    Schnaith E
    Clin Biochem; 1989 Apr; 22(2):91-8. PubMed ID: 2498014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Defining the substrate specificity of mouse cathepsin P.
    Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK
    Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative studies on the effect of specific inactivators on human gastricsin and pepsin.
    Hunkapiller M; Heinze JE; Mills JN
    Biochemistry; 1970 Jul; 9(14):2897-902. PubMed ID: 4918124
    [No Abstract]   [Full Text] [Related]  

  • 48. Structural features that make oligopeptides susceptible substrates for hydrolysis by recombinant thimet oligopeptidase.
    Camargo AC; Gomes MD; Reichl AP; Ferro ES; Jacchieri S; Hirata IY; Juliano L
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):517-22. PubMed ID: 9182712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monkey pepsinogens and pepsins. IV. The amino acid sequence of the activation peptide segment of Japanese monkey pepsinogen.
    Kageyama T; Takahashi K
    J Biochem; 1980 Jul; 88(1):9-16. PubMed ID: 6773933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzyme assays for the identification of gastric fluid.
    Lee HC; Gaensslen RE; Galvin C; Pagliaro EM
    J Forensic Sci; 1985 Jan; 30(1):97-102. PubMed ID: 3920346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrolysis of the synthetic chromophoric hexapeptide Leu-Ser-Phe(NO2)-Nle-Ala-Leu-OMe catalyzed by bovine pepsin A. Dependence on pH and effect of enzyme phosphorylation level.
    Martin P
    Biochim Biophys Acta; 1984 Nov; 791(1):28-36. PubMed ID: 6437448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Substrate specificity and kinetic properties of pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. No. 101.
    Oda K; Nakatani H; Dunn BM
    Biochim Biophys Acta; 1992 Apr; 1120(2):208-14. PubMed ID: 1562589
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2.
    Rao S; Mizutani O; Hirano T; Masaki K; Iefuji H
    J Biosci Bioeng; 2011 Nov; 112(5):441-6. PubMed ID: 21824815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pepstatin inhibition mechanism.
    Marciniszyn J; Hartsuck JA; Tang J
    Adv Exp Med Biol; 1977; 95():199-210. PubMed ID: 339690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specificity of gastric proteinases.
    Korbová L; Kohout J; Kasafírek E; Beranová J
    Acta Univ Carol Med Monogr; 1977; (79 Pt 3):149-56. PubMed ID: 354358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gastric pepsin, mucus and clinical secretory studies. I. Gastric pepsin and pepsin inhibitors. Comparative studies on the structure and specificity of human gastricsin, pepsin and zymogen.
    Tang J; Mills J; Chiang L; de Chiang L
    Ann N Y Acad Sci; 1967 Jan; 140(2):688-96. PubMed ID: 5339659
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of a pepsin-inhibitory pentapeptide upon the peptic activity and acidity of gastric secretion.
    Svendsen LB; Guldager N; Christensen L; Christiansen PM
    Scand J Gastroenterol; 1976; 11(5):459-64. PubMed ID: 785587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A modified hemoglobin substrate method for the estimation of pepsin in gastric juice.
    Berstad A
    Scand J Gastroenterol; 1970; 5(5):343-8. PubMed ID: 4917140
    [No Abstract]   [Full Text] [Related]  

  • 60. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis.
    Simões I; Faro R; Bur D; Kay J; Faro C
    FEBS J; 2011 Sep; 278(17):3177-86. PubMed ID: 21749650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.