BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12694787)

  • 1. Gene expression profiling of human stenotic aorto-coronary bypass grafts by cDNA array analysis.
    Hilker M; Längin T; Hake U; Schmid FX; Kuroczynski W; Lehr HA; Oelert H; Buerke M
    Eur J Cardiothorac Surg; 2003 Apr; 23(4):620-5. PubMed ID: 12694787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bypass graft disease: analysis of proliferative activity in human aorto-coronary bypass grafts.
    Hilker M; Buerke M; Lehr HA; Oelert H; Hake U
    Heart Surg Forum; 2002; 5 Suppl 4():S331-41. PubMed ID: 12759206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the proto-oncogene c-myc in human stenotic aortocoronary bypass grafts.
    Hilker M; Tellmann G; Buerke M; Moersig W; Oelert H; Lehr HA; Hake U
    Pathol Res Pract; 2001; 197(12):811-6. PubMed ID: 11795828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiling of human stent-induced neointima by cDNA array analysis of microscopic specimens retrieved by helix cutter atherectomy: Detection of FK506-binding protein 12 upregulation.
    Zohlnhöfer D; Klein CA; Richter T; Brandl R; Murr A; Nührenberg T; Schömig A; Baeuerle PA; Neumann FJ
    Circulation; 2001 Mar; 103(10):1396-402. PubMed ID: 11245643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferative activity in stenotic human aortocoronary bypass grafts.
    Hilker M; Tellmann G; Buerke M; Gloger K; Moersig W; Oelert H; Hake U; Lehr HA
    Cardiovasc Pathol; 2002; 11(5):284-90. PubMed ID: 12361839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of dendritic cells in long-term aortocoronary saphenous vein bypass graft failure.
    Cherian SM; Bobryshev YV; Inder SJ; Lord RS; Reddi KH; Farnsworth AE; Tran D; Munro VF; Ashwell KW
    Cardiovasc Surg; 1999 Aug; 7(5):508-18. PubMed ID: 10499893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene therapy with antisense oligonucleotides silencing c-myc reduces neointima formation and vessel wall thickness in a mouse model of vein graft disease.
    Steger CM; Bonaros N; Rieker RJ; Bonatti J; Schachner T
    Exp Mol Pathol; 2018 Aug; 105(1):1-9. PubMed ID: 29775572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries.
    Lytle BW; Loop FD; Taylor PC; Goormastic M; Stewart RW; Novoa R; McCarthy P; Cosgrove DM
    J Thorac Cardiovasc Surg; 1993 Apr; 105(4):605-12; discussion 612-4. PubMed ID: 8468995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical and ultrastructural evidence that dendritic cells infiltrate stenotic aortocoronary saphenous vein bypass grafts.
    Cherian SM; Bobryshev YV; Liang H; Inder SJ; Wang AY; Lord RS; Tran D; Pandey P; Halasz P; Farnsworth AE
    Cardiovasc Surg; 2001 Apr; 9(2):194-200. PubMed ID: 11250191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vein graft disease: the clinical impact of stenoses in saphenous vein bypass grafts to coronary arteries.
    Lytle BW; Loop FD; Taylor PC; Simpfendorfer C; Kramer JR; Ratliff NB; Goormastic M; Cosgrove DM
    J Thorac Cardiovasc Surg; 1992 May; 103(5):831-40. PubMed ID: 1569763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD40 co-stimulatory molecule expression by dendritic cells in primary atherosclerotic lesions in carotid arteries and in stenotic saphenous vein coronary artery grafts.
    Ozmen J; Bobryshev YV; Lord RS
    Cardiovasc Surg; 2001 Aug; 9(4):329-33. PubMed ID: 11420156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of endothelin-1 (ET) receptors (ET(A) and ET(B)) and immunoreactive ET-1 in porcine saphenous vein-carotid artery interposition grafts.
    Dashwood MR; Mehta D; Izzat MB; Timm M; Bryan AJ; Angelini GD; Jeremy JY
    Atherosclerosis; 1998 Apr; 137(2):233-42. PubMed ID: 9622266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia induces heat shock protein expression in human coronary artery bypass grafts.
    Hammerer-Lercher A; Mair J; Bonatti J; Watzka SB; Puschendorf B; Dirnhofer S
    Cardiovasc Res; 2001 Apr; 50(1):115-24. PubMed ID: 11282084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Morphological changes in aorto-coronary vein graft--the analysis of autopsy and biopsy material].
    Tatić V; Kanjuh V; Rafajlovski S; Suscević D; Ilić R
    Vojnosanit Pregl; 2004; 61(5):499-506. PubMed ID: 15551802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting.
    Mehta D; George SJ; Jeremy JY; Izzat MB; Southgate KM; Bryan AJ; Newby AC; Angelini GD
    Nat Med; 1998 Feb; 4(2):235-9. PubMed ID: 9461200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term histological and immunohistochemical findings in human venous aorto-coronary bypass grafts.
    Ribichini F; Pugno F; Ferrero V; Wijns W; Vacca G; Vassanelli C; Virmani R
    Clin Sci (Lond); 2008 Feb; 114(3):211-20. PubMed ID: 17848140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryopreserved homologous saphenous vein: early and late patency in coronary artery bypass surgical procedures.
    Gelbfish J; Jacobowitz IJ; Rose DM; Connolly MW; Acinapura AJ; Zisbrod Z; Lim KH; Cappabianca P; Cunningham JN
    Ann Thorac Surg; 1986 Jul; 42(1):70-3. PubMed ID: 3488041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late outcomes after radial artery versus saphenous vein grafting during reoperative coronary artery bypass surgery.
    Zacharias A; Schwann TA; Riordan CJ; Durham SJ; Shah AS; Engoren M; Habib RH
    J Thorac Cardiovasc Surg; 2010 Jun; 139(6):1511-1518.e4. PubMed ID: 19818456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenoviral delivery of a constitutively active retinoblastoma mutant inhibits neointima formation in a human explant model for vein graft disease.
    Lamfers ML; Aalders MC; Grimbergen JM; de Vries MR; Kockx MM; van Hinsbergh VW; Quax PH
    Vascul Pharmacol; 2002 Dec; 39(6):293-301. PubMed ID: 14567067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency.
    Kenagy RD; Civelek M; Kikuchi S; Chen L; Grieff A; Sobel M; Lusis AJ; Clowes AW
    J Vasc Surg; 2016 Jul; 64(1):202-209.e6. PubMed ID: 25935274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.