BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12694887)

  • 21. Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables.
    Bassi da Silva J; Ferreira SBS; Reis AV; Cook MT; Bruschi ML
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery.
    Jones DS; Lawlor MS; Woolfson AD
    J Pharm Sci; 2003 May; 92(5):995-1007. PubMed ID: 12712419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of surface properties of some polymers by a thermodynamic and mechanical approach: possibility of predicting mucoadhesion and biocompatibility.
    Esposito P; Colombo I; Lovrecich M
    Biomaterials; 1994 Feb; 15(3):177-82. PubMed ID: 8199290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheological, mucoadhesive and release properties of pluronic F-127 gel and pluronic F-127/polycarbophil mixed gel systems.
    Tirnaksiz F; Robinson JR
    Pharmazie; 2005 Jul; 60(7):518-23. PubMed ID: 16076078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.
    Copetti G; Grassi M; Lapasin R; Pricl S
    Glycoconj J; 1997 Dec; 14(8):951-61. PubMed ID: 9486428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-Hydroxysulfosuccinimide Esters versus Thiomers: A Comparative Study Regarding Mucoadhesiveness.
    Leichner C; Wulz P; Baus RA; Menzel C; Götzfried SK; Gust R; Bernkop-Schnürch A
    Mol Pharm; 2019 Mar; 16(3):1211-1219. PubMed ID: 30707584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Carbopol and polyvinylpyrrolidone on the mechanical, rheological, and release properties of bioadhesive polyethylene glycol gels.
    Tan YT; Peh KK; Al-Hanbali O
    AAPS PharmSciTech; 2000 Aug; 1(3):E24. PubMed ID: 14727910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for nystatin.
    Hombach J; Palmberger TF; Bernkop-Schnürch A
    J Pharm Sci; 2009 Feb; 98(2):555-64. PubMed ID: 18563796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug release and washability of mucoadhesive gels based on sodium carboxymethylcellulose and polyacrylic acid.
    Rossi S; Bonferoni MC; Ferrari F; Caramella C
    Pharm Dev Technol; 1999 Jan; 4(1):55-63. PubMed ID: 10027213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors influencing gel-strengthening at the mucoadhesive-mucus interface.
    Mortazavi SA; Smart JD
    J Pharm Pharmacol; 1994 Feb; 46(2):86-90. PubMed ID: 8021811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheological analysis and mucoadhesion: A 30 year-old and still active combination.
    Rossi S; Vigani B; Bonferoni MC; Sandri G; Caramella C; Ferrari F
    J Pharm Biomed Anal; 2018 Jul; 156():232-238. PubMed ID: 29729636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterisation of mucoadhesive thiolated polyallylamine.
    Duggan S; Hughes H; Owens E; Duggan E; Cummins W; O' Donovan O
    Int J Pharm; 2016 Feb; 499(1-2):368-375. PubMed ID: 26792169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties.
    Karavana SY; Güneri P; Ertan G
    Pharm Dev Technol; 2009; 14(6):623-31. PubMed ID: 19883251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of lipid on the structure and rheology of gels formed by canine submaxillary mucin.
    Rogunova MA; Blackwell J; Jamieson AM; Pasumar-Thy M; Gerken TA
    Biorheology; 1997; 34(4-5):295-308. PubMed ID: 9578805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of ageing on the rheological, dielectric and mucoadhesive properties of poly(acrylic acid) gel systems.
    Tamburic S; Craig DQ
    Pharm Res; 1996 Feb; 13(2):279-83. PubMed ID: 8932449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rheological characterisation of primary and binary interactive bioadhesive gels composed of cellulose derivatives designed as ophthalmic viscosurgical devices.
    Andrews GP; Gorman SP; Jones DS
    Biomaterials; 2005 Feb; 26(5):571-80. PubMed ID: 15276365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties.
    Mayol L; Quaglia F; Borzacchiello A; Ambrosio L; La Rotonda MI
    Eur J Pharm Biopharm; 2008 Sep; 70(1):199-206. PubMed ID: 18644705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles.
    Ruiz-Pulido G; Medina DI
    Eur J Pharm Biopharm; 2021 Feb; 159():123-136. PubMed ID: 33387633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheological and mechanical properties of pharmaceutical gels. Part I: Non-medicated systems.
    Ferrari F; Rossi S; Bonferoni MC; Caramella C
    Boll Chim Farm; 2001; 140(5):329-36. PubMed ID: 11680087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheological evaluation of silicon/carbopol hydrophilic gel systems as a vehicle for delivery of water insoluble drugs.
    Bonacucina G; Cespi M; Misici-Falzi M; Palmieri GF
    AAPS J; 2008; 10(1):84-91. PubMed ID: 18446508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.