These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12695003)

  • 1. Modeling the relation between cardiac pump function and myofiber mechanics.
    Arts T; Bovendeerd P; Delhaas T; Prinzen F
    J Biomech; 2003 May; 36(5):731-6. PubMed ID: 12695003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study.
    Kerckhoffs RC; Bovendeerd PH; Kotte JC; Prinzen FW; Smits K; Arts T
    Ann Biomed Eng; 2003 May; 31(5):536-47. PubMed ID: 12757198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment.
    Kerckhoffs RC; Faris OP; Bovendeerd PH; Prinzen FW; Smits K; McVeigh ER; Arts T
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S188-95. PubMed ID: 14760923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics.
    Bovendeerd PH; Huyghe JM; Arts T; van Campen DH; Reneman RS
    J Biomech; 1994 Jul; 27(7):941-51. PubMed ID: 8063844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of changes in myocardial tissue properties during left ventricular assistance with a rotary blood pump.
    Martina JR; Bovendeerd PH; de Jonge N; de Mol BA; Lahpor JR; Rutten MC
    Artif Organs; 2013 Jun; 37(6):531-40. PubMed ID: 23278527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and torsion in the normal and situs inversus totalis cardiac left ventricle. II. Modeling cardiac adaptation to mechanical load.
    Kroon W; Delhaas T; Bovendeerd P; Arts T
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H202-10. PubMed ID: 18424633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological significance of pressure-volume relationship: a load-independent index and a determinant of pump function.
    Sugimachi M; Sunagawa K; Uemura K; Shishido T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3553. PubMed ID: 21096826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity.
    Beyar R; Sideman S
    Circ Res; 1984 Sep; 55(3):358-75. PubMed ID: 6467528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics.
    Lumens J; Delhaas T; Kirn B; Arts T
    Pac Symp Biocomput; 2008; ():378-89. PubMed ID: 18229701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-effect relations for left ventricular growth obtained with a simple multi-scale model: the influence of hemodynamic feedback.
    Rondanina E; Bovendeerd PHM
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2111-2126. PubMed ID: 32358671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction.
    Lumens J; Delhaas T; Kirn B; Arts T
    Ann Biomed Eng; 2009 Nov; 37(11):2234-55. PubMed ID: 19718527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of dsigma*/dt (max), a load independent index of contractility, in the canine.
    Black A; Grenz N; Niccole S; Arndt P; Lucht J; Nesvig K; Ewert D; Mulligan L
    Cardiovasc Eng; 2009 Jun; 9(2):49-55. PubMed ID: 19466542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of myocardial twist in the remodelled athlete's heart is not related to cardiac output.
    Cooke S; Samuel TJ; Cooper SM; Stöhr EJ
    Exp Physiol; 2018 Nov; 103(11):1456-1468. PubMed ID: 30204274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pressure-volume relationship of the heart: past, present and future.
    Sunagawa K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3554-5. PubMed ID: 21096827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of activation pattern and active stress development on myocardial shear in a model with adaptive myofiber reorientation.
    Pluijmert M; Bovendeerd PH; Kroon W; Prinzen FW; Delhaas T
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H538-46. PubMed ID: 24322610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explaining left ventricular pressure dynamics in terms of LV passive and active elastances.
    Zhong L; Ghista DN; Ng EY; Lim ST; Tan RS; Chua LP
    Proc Inst Mech Eng H; 2006 Jul; 220(5):647-55. PubMed ID: 16898221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reassessing right ventricular function and ventricular interaction: the role of global myocardial contractile mechanics.
    Pasque MK; Wechsler AS
    J Card Surg; 1986 Dec; 1(4):393-402. PubMed ID: 2979935
    [No Abstract]   [Full Text] [Related]  

  • 19. An approximation model of myocardial crossbridge for weak coupling calculation of left ventricle model and circulation model.
    Amano A; Takada Y; Lu J; Shimayoshi T; Matsuda T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():957-60. PubMed ID: 19162816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of left ventricular viscoelastic components based on ventricular harmonic behavior.
    Kheradvar A; Milano M; Gorman RC; Gorman JH; Gharib M
    Cardiovasc Eng; 2006 Mar; 6(1):30-9. PubMed ID: 16900419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.