BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12695075)

  • 1. Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications.
    Davis KA; Burdick JA; Anseth KS
    Biomaterials; 2003 Jun; 24(14):2485-95. PubMed ID: 12695075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: photopolymerizable and degradable biomaterials for tissue engineering applications.
    Ifkovits JL; Burdick JA
    Tissue Eng; 2007 Oct; 13(10):2369-85. PubMed ID: 17658993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tough biodegradable mixed-macromer networks and hydrogels by photo-crosslinking in solution.
    Zant E; Grijpma DW
    Acta Biomater; 2016 Feb; 31():80-88. PubMed ID: 26687979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography.
    Melchels FP; Feijen J; Grijpma DW
    Biomaterials; 2009 Aug; 30(23-24):3801-9. PubMed ID: 19406467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges in the characterization of plasma-processed three-dimensional polymeric scaffolds for biomedical applications.
    Fisher ER
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9312-21. PubMed ID: 24028344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of biodegradable networks by photo-crosslinking lactide, epsilon-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester.
    Grijpma DW; Hou Q; Feijen J
    Biomaterials; 2005 Jun; 26(16):2795-802. PubMed ID: 15603775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K
    Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering.
    Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK
    Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.
    Atzet S; Curtin S; Trinh P; Bryant S; Ratner B
    Biomacromolecules; 2008 Dec; 9(12):3370-7. PubMed ID: 19061434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds.
    Nuttelman CR; Henry SM; Anseth KS
    Biomaterials; 2002 Sep; 23(17):3617-26. PubMed ID: 12109687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface functionalization of degradable polymers by covalent grafting.
    Källrot M; Edlund U; Albertsson AC
    Biomaterials; 2006 Mar; 27(9):1788-96. PubMed ID: 16257444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of an UV-Curable Divinyl-Fumarate Poly-ε-Caprolactone for Stereolithography Applications.
    Ronca A; Ronca S; Forte G; Ambrosio L
    Methods Mol Biol; 2021; 2147():55-62. PubMed ID: 32840810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic degradation behavior of poly(rac-lactide)-block-poly(propylene glycol)-block-poly(rac-lactide) dimethacrylate derived networks designed for biomedical applications.
    Wischke C; Tripodo G; Choi NY; Lendlein A
    Macromol Biosci; 2011 Dec; 11(12):1637-46. PubMed ID: 22012787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development, characterization, and cellular adhesion of poly(L-lactic acid)/poly(caprolactone triol) membranes for potential application in bone tissue regeneration.
    Mistura DV; Messias AD; Duek EA; Duarte MA
    Artif Organs; 2013 Nov; 37(11):978-84. PubMed ID: 24237398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.