BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 12695182)

  • 1. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm.
    Steinman DA; Milner JS; Norley CJ; Lownie SP; Holdsworth DW
    AJNR Am J Neuroradiol; 2003 Apr; 24(4):559-66. PubMed ID: 12695182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The promise of computational fluid dynamics as a tool for delineating therapeutic options in the treatment of aneurysms.
    Metcalfe RW
    AJNR Am J Neuroradiol; 2003 Apr; 24(4):553-4. PubMed ID: 12695178
    [No Abstract]   [Full Text] [Related]  

  • 3. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics.
    Castro MA; Putman CM; Cebral JR
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1703-9. PubMed ID: 16971618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms?
    Najafi M; Cancelliere NM; Brina O; Bouillot P; Vargas MI; Delattre BM; Pereira VM; Steinman DA
    J Neurointerv Surg; 2021 May; 13(5):459-464. PubMed ID: 32732256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D computational fluid dynamics of a treated vertebrobasilar giant aneurysm: a multistage analysis.
    Graziano F; Russo VM; Wang W; Khismatullin D; Ulm AJ
    AJNR Am J Neuroradiol; 2013 Jul; 34(7):1387-94. PubMed ID: 23306008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.
    Chien A; Tateshima S; Sayre J; Castro M; Cebral J; Viñuela F
    Surg Neurol; 2009 Nov; 72(5):444-50; discussion 450. PubMed ID: 19329152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Fluid Dynamics to Evaluate the Management of a Giant Internal Carotid Artery Aneurysm.
    Russin J; Babiker H; Ryan J; Rangel-Castilla L; Frakes D; Nakaji P
    World Neurosurg; 2015 Jun; 83(6):1057-65. PubMed ID: 25541083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance fluid dynamics for intracranial aneurysms--comparison with computed fluid dynamics.
    Naito T; Miyachi S; Matsubara N; Isoda H; Izumi T; Haraguchi K; Takahashi I; Ishii K; Wakabayashi T
    Acta Neurochir (Wien); 2012 Jun; 154(6):993-1001. PubMed ID: 22392013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature.
    Zeng Z; Kallmes DF; Durka MJ; Ding Y; Lewis D; Kadirvel R; Robertson AM
    J Biomech Eng; 2010 Sep; 132(9):091009. PubMed ID: 20815643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics.
    Ford MD; Stuhne GR; Nikolov HN; Habets DF; Lownie SP; Holdsworth DW; Steinman DA
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1586-92. PubMed ID: 16350918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of image-based analysis of cerebral aneurysm geometry and hemodynamics: an in-vitro study of magnetic resonance imaging, computed tomography, and three-dimensional rotational angiography.
    Goubergrits L; Schaller J; Kertzscher U; Petz Ch; Hege HC; Spuler A
    J Neurol Surg A Cent Eur Neurosurg; 2013 Sep; 74(5):294-302. PubMed ID: 23700168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of geometric and hemodynamic parameters on aneurysm visualization during three-dimensional rotational angiography: an in vitro study.
    Ernemann UU; Grönewäller E; Duffner FB; Guervit O; Claassen J; Skalej MD
    AJNR Am J Neuroradiol; 2003 Apr; 24(4):597-603. PubMed ID: 12695187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4D-CT angiography versus 3D-rotational angiography as the imaging modality for computational fluid dynamics of cerebral aneurysms.
    Cancelliere NM; Najafi M; Brina O; Bouillot P; Vargas MI; Lovblad KO; Krings T; Pereira VM; Steinman DA
    J Neurointerv Surg; 2020 Jun; 12(6):626-630. PubMed ID: 31772042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location.
    Detmer FJ; Chung BJ; Jimenez C; Hamzei-Sichani F; Kallmes D; Putman C; Cebral JR
    Neuroradiology; 2019 Mar; 61(3):275-284. PubMed ID: 30456458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations.
    Berg P; Saalfeld S; Voß S; Redel T; Preim B; Janiga G; Beuing O
    J Neurointerv Surg; 2018 Mar; 10(3):290-296. PubMed ID: 28465404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.