These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12695889)

  • 1. Spatial trends in the sighting dates of British butterflies.
    Roy DB; Asher J
    Int J Biometeorol; 2003 Aug; 47(4):188-92. PubMed ID: 12695889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities in butterfly emergence dates among populations suggest local adaptation to climate.
    Roy DB; Oliver TH; Botham MS; Beckmann B; Brereton T; Dennis RL; Harrower C; Phillimore AB; Thomas JA
    Glob Chang Biol; 2015 Sep; 21(9):3313-22. PubMed ID: 26390228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.
    Kharouba HM; Vellend M
    J Anim Ecol; 2015 Sep; 84(5):1311-21. PubMed ID: 25823582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe.
    Emberlin J; Detandt M; Gehrig R; Jaeger S; Nolard N; Rantio-Lehtimäki A
    Int J Biometeorol; 2002 Sep; 46(4):159-70. PubMed ID: 12242471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing seasonal range expansion of the tropical butterfly, Heliconius charithonia, into Texas using historical records.
    Cardoso MZ
    J Insect Sci; 2010; 10():69. PubMed ID: 20672989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended season for northern butterflies.
    Karlsson B
    Int J Biometeorol; 2014 Jul; 58(5):691-701. PubMed ID: 23456374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field transplants reveal summer constraints on a butterfly range expansion.
    Crozier LG
    Oecologia; 2004 Sep; 141(1):148-57. PubMed ID: 15278427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of butterflies to twentieth century climate warming: implications for future ranges.
    Hill JK; Thomas CD; Fox R; Telfer MG; Willis SG; Asher J; Huntley B
    Proc Biol Sci; 2002 Oct; 269(1505):2163-71. PubMed ID: 12396492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.
    Casner KL; Forister ML; O'Brien JM; Thorne J; Waetjen D; Shapiro AM
    Conserv Biol; 2014 Jun; 28(3):773-82. PubMed ID: 24527888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century.
    Brooks SJ; Self A; Toloni F; Sparks T
    Int J Biometeorol; 2014 Oct; 58(8):1749-58. PubMed ID: 24429705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid responses of British butterflies to opposing forces of climate and habitat change.
    Warren MS; Hill JK; Thomas JA; Asher J; Fox R; Huntley B; Roy DB; Telfer MG; Jeffcoate S; Harding P; Jeffcoate G; Willis SG; Greatorex-Davies JN; Moss D; Thomas CD
    Nature; 2001 Nov; 414(6859):65-9. PubMed ID: 11689943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada.
    Westwood AR; Blair D
    Environ Entomol; 2010 Aug; 39(4):1122-33. PubMed ID: 22127162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect.
    Merrill RM; Gutiérrez D; Lewis OT; Gutiérrez J; Díez SB; Wilson RJ
    J Anim Ecol; 2008 Jan; 77(1):145-55. PubMed ID: 18177334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic differentiation across a latitudinal gradient in two co-occurring butterfly species: revealing population differences in a context of climate change.
    Zakharov EV; Hellmann JJ
    Mol Ecol; 2008 Jan; 17(1):189-208. PubMed ID: 17784923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate effects on late-season flight times of Massachusetts butterflies.
    Zipf L; Williams EH; Primack RB; Stichter S
    Int J Biometeorol; 2017 Sep; 61(9):1667-1673. PubMed ID: 28382376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting impacts of precipitation on Mediterranean birds and butterflies.
    Herrando S; Titeux N; Brotons L; Anton M; Ubach A; Villero D; García-Barros E; Munguira ML; Godinho C; Stefanescu C
    Sci Rep; 2019 Apr; 9(1):5680. PubMed ID: 30952919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drivers of climate change impacts on bird communities.
    Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE
    J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of climate on the timing and rate of spring bird migration.
    Marra PP; Francis CM; Mulvihill RS; Moore FR
    Oecologia; 2005 Jan; 142(2):307-15. PubMed ID: 15480801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.
    Howe PD; Bryant SR; Shreeve TG
    Oecologia; 2007 Oct; 153(4):857-69. PubMed ID: 17587061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.