These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 12696410)
1. Study of potatoes' sprout inhibitor treatments with chlorprophame. Noël S; Huyghebaert B; Pigeon O; Weickmans B; Mostade O Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(3):431-9. PubMed ID: 12696410 [TBL] [Abstract][Full Text] [Related]
2. The heterogeneity of sprout inhibitor application with chlorpropham. Noël S; Huyghebaert B; Pigeon O; Weickmans B; Mostade O Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):739-48. PubMed ID: 15151310 [TBL] [Abstract][Full Text] [Related]
3. The carry-through of residues of thiabendazole, tecnazene and chlorpropham from potatoes following manufacture into potato crisps and jacket potato crisps. Lewis DJ; Thorpe SA; Reynolds SL Food Addit Contam; 1996; 13(2):221-9. PubMed ID: 9064247 [TBL] [Abstract][Full Text] [Related]
4. Level and fate of chlorpropham in potatoes during storage and processing. Sakaliene O; Koskinen WC; Blazauskiene G; Petroviene I J Environ Sci Health B; 2009 Jan; 44(1):1-6. PubMed ID: 19089708 [TBL] [Abstract][Full Text] [Related]
5. Determination of chlorprophame residues in potatoes by GC-NPD or GC-MS. Pigeon O; de Vos P; Potvin J; Thiry K; Villette D; Vandenberghe JP; Huyghebaert B; Noel S Commun Agric Appl Biol Sci; 2005; 70(4):1079-82. PubMed ID: 16628958 [No Abstract] [Full Text] [Related]
6. Carbohydrate metabolism dynamic in chlorpropham- and 1,4-dimethylnaphthalene-treated potatoes and its effect on the browning of French fries. Krause MR; Ferreira de Araujo F; Ferreira Moreira K; Oliveira de Araújo N; Paulo de Jesus Tello J; Nayana de Sousa Santos M; Luiz Finger F Food Chem; 2023 Dec; 429():136718. PubMed ID: 37487392 [TBL] [Abstract][Full Text] [Related]
8. Complexation of chlorpropham with hydroxypropyl-β-cyclodextrin and its application in potato sprout inhibition. Huang Z; Tian S; Ge X; Zhang J; Li S; Li M; Cheng J; Zheng H Carbohydr Polym; 2014 Jul; 107():241-6. PubMed ID: 24702941 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1. Pujar NK; Premakshi HG; Laad S; Pattar SV; Mirjankar M; Kamanavalli CM World J Microbiol Biotechnol; 2018 Jul; 34(8):112. PubMed ID: 29980862 [TBL] [Abstract][Full Text] [Related]
10. Determination of chlorpropham (CIPC) residues, in the concrete flooring of potato stores, using quantitative (HPLC UV/VIS) and qualitative (GCMS) methods. Douglas L; MacKinnon G; Cook G; Duncan H; Briddon A; Seamark S Chemosphere; 2018 Mar; 195():119-124. PubMed ID: 29258008 [TBL] [Abstract][Full Text] [Related]
11. Multi-residue method for determination of pesticides residues in potatoes by GC-NPD. Pigeon O; Ducat N; Demeulenaere L; Soete A; Somerhausen E Commun Agric Appl Biol Sci; 2005; 70(4):1083-6. PubMed ID: 16628959 [No Abstract] [Full Text] [Related]
12. Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. Paul V; Ezekiel R; Pandey R J Food Sci Technol; 2016 Jan; 53(1):1-18. PubMed ID: 26787928 [TBL] [Abstract][Full Text] [Related]
13. Comparison of an HPTLC and an HPLC procedure for the determination of chlorpropham, propham and thiabendazole residues in potatoes. Corti P; Dreassi E; Politi N; Aprea C Food Addit Contam; 1991; 8(5):607-15. PubMed ID: 1818834 [TBL] [Abstract][Full Text] [Related]
14. Maleic hydrazide: sprout suppression of potatoes in the field. De Blauwer V; Demeulemeester K; Demeyere A; Hofmans E Commun Agric Appl Biol Sci; 2012; 77(3):343-51. PubMed ID: 23878989 [TBL] [Abstract][Full Text] [Related]
15. Rinsing and management of pesticides' containers. Huyghebaert B; Mostade O; Pigeon O; Galoux M; Oger R Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):47-58. PubMed ID: 12701405 [TBL] [Abstract][Full Text] [Related]
16. The sprout inhibitors chlorpropham and 1,4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Campbell MA; Gleichsner A; Alsbury R; Horvath D; Suttle J Plant Mol Biol; 2010 May; 73(1-2):181-9. PubMed ID: 20135197 [TBL] [Abstract][Full Text] [Related]
17. Influence of storage practices on acrylamide formation during potato frying. De Wilde T; De Meulenaer B; Mestdagh F; Govaert Y; Vandeburie S; Ooghe W; Fraselle S; Demeulemeester K; Van Peteghem C; Calus A; Degroodt JM; Verhé R J Agric Food Chem; 2005 Aug; 53(16):6550-7. PubMed ID: 16076148 [TBL] [Abstract][Full Text] [Related]
18. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
19. A simple and quick gas chromatographic method for the determination of propham and chlorpropham in potatoes. Beernaert H; Hucorne P Z Lebensm Unters Forsch; 1991 Nov; 193(5):433-5. PubMed ID: 1771973 [TBL] [Abstract][Full Text] [Related]
20. Fate of Chlorpropham during High-Temperature Processing of Potatoes. Göckener B; Kotthoff M; Kling HW; Bücking M J Agric Food Chem; 2020 Feb; 68(8):2578-2587. PubMed ID: 31961151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]