These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1269652)

  • 1. Increased erythrocyte permeability to Li and Na in the spontaneously hypertensive rat.
    Friedman SM; Nakashima M; McIndoe RA; Friedman CL
    Experientia; 1976 Apr; 32(4):476-8. PubMed ID: 1269652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Erythrocyte membrane permeability of monovalent cations in rats with spontaneous arterial hypertension].
    Khrustaleva RS; Gusev GP
    Kardiologiia; 1987 Aug; 27(8):65-8. PubMed ID: 3682580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats.
    Postnov YU; Orlov S; Gulak P; Shevchenko A
    Pflugers Arch; 1976 Sep; 365(2-3):257-63. PubMed ID: 988566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats.
    Postnov YV; Orlov SN; Gulak PV; Shevchenko AS
    Clin Sci Mol Med Suppl; 1976 Dec; 3():169s-172s. PubMed ID: 1071599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red cell ouabain-resistant Na+ and K+ transport in Wistar, Brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(6):181-8. PubMed ID: 8180150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic difference in erythrocyte membrane in spontaneously hypertensive rats characterized by Na+ and K+ fluxes.
    van de Ven CJ; Bohr DF
    Pflugers Arch; 1983 Sep; 399(1):74-8. PubMed ID: 6647002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relation between disorders of erythrocyte membrane permeability for monovalent ions and intracellular distribution of calcium in primary arterial hypertension].
    Orlov SN; Riazhskiĭ GG; Kravtsov GM; Postnov IuV
    Kardiologiia; 1984 Mar; 24(3):87-95. PubMed ID: 6727100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume-dependent regulation of cation transport and polyphosphoinositide metabolism in human and rat erythrocytes: features revealed in primary hypertension.
    Orlov SN; Pokudin NI; Gulak PV; Postnov YuV
    Physiol Bohemoslov; 1990; 39(1):15-26. PubMed ID: 2165266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium transport kinetics in erythrocytes from spontaneously hypertensive rats.
    Rosati C; Meyer P; Garay R
    Hypertension; 1988 Jan; 11(1):41-8. PubMed ID: 2448240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transport of univalent cations across the erythrocyte membrane of hypertensive rats of various ages].
    Gusev GP; Skul'skiĭ IA; Khrusmaleva RS
    Tsitologiia; 1988 Nov; 30(11):1318-23. PubMed ID: 2854318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexisting independent sodium-sensitive and sodium-insensitive mechanisms of genetic hypertension in spontaneously hypertensive rats (SHR).
    Wells IC; Blotcky AJ
    Can J Physiol Pharmacol; 2001 Sep; 79(9):779-84. PubMed ID: 11599778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats.
    De Mendonca M; Grichois ML; Garay RP; Sassard J; Ben-Ishay D; Meyer P
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4283-6. PubMed ID: 6254018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased sodium permeability of erythrocytes in spontaneously hypertensive rats.
    Wiley JS; Hutchinson JS; Mendelsohn FA; Doyle AE
    Clin Exp Pharmacol Physiol; 1980; 7(5):527-30. PubMed ID: 7449195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of sodium-lithium countertransport in normotensive and hypertensive subjects.
    Siebers RW; Maling TJ
    J Cardiovasc Pharmacol; 1990; 16 Suppl 7():S59-61. PubMed ID: 1708027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass electrode measurement of net Na+ and K+ fluxes in erythrocytes of the spontaneously hypertensive rat.
    Friedman SM; Nakashima M; McIndoe
    Can J Physiol Pharmacol; 1977 Dec; 55(6):1302-10. PubMed ID: 597780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 1: Evaluation of a simple uptake test to assess the activity of the two transport systems.
    Duhm J; Göbel BO
    Hypertension; 1982; 4(4):468-76. PubMed ID: 7152628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red cell Na+ -K+ transport in various forms of human hypertension. Role of cardiovascular risk factors and plasma potassium.
    Behr J; Witzgall H; Lorenz R; Weber PC; Duhm J
    Klin Wochenschr; 1985; 63 Suppl 3():63-5. PubMed ID: 3999648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of sodium transport processes of human and rat erythrocytes in hypertension.
    Lau YT; Tsai CJ; Tseng AH
    J Formos Med Assoc; 1992 Jul; 91(7):674-9. PubMed ID: 1360293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of exogenous factors in alterations of red cell Na+-Li+ exchange and Na+-K+ cotransport in essential hypertension, primary hyperaldosteronism, and hypokalemia.
    Duhm J; Behr J
    Scand J Clin Lab Invest Suppl; 1986; 180():82-95. PubMed ID: 3012766
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.