BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12696798)

  • 1. Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy.
    Lahanas M; Baltas D; Giannouli S
    Phys Med Biol; 2003 Mar; 48(5):599-617. PubMed ID: 12696798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms.
    Lahanas M; Schreibmann E; Baltas D
    Phys Med Biol; 2003 Sep; 48(17):2843-71. PubMed ID: 14516105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms.
    Milickovic N; Lahanas M; Papagiannopoulo M; Zamboglou N; Baltas D
    Phys Med Biol; 2002 Jul; 47(13):2263-80. PubMed ID: 12164586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are dose calculations during dose optimization in brachytherapy necessary?
    Lahanas M; Baltas D
    Med Phys; 2003 Sep; 30(9):2368-75. PubMed ID: 14528959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy.
    Lahanas M; Baltas D; Zamboglou N
    Phys Med Biol; 2003 Feb; 48(3):399-415. PubMed ID: 12608615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy.
    Poulin E; Fekete CA; Létourneau M; Fenster A; Pouliot J; Beaulieu L
    Med Phys; 2013 Nov; 40(11):111724. PubMed ID: 24320432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GPU-based multi-criteria optimization algorithm for HDR brachytherapy.
    Bélanger C; Cui S; Ma Y; Després P; Adam M Cunha J; Beaulieu L
    Phys Med Biol; 2019 May; 64(10):105005. PubMed ID: 30970341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed and convergence properties of gradient algorithms for optimization of IMRT.
    Zhang X; Liu H; Wang X; Dong L; Wu Q; Mohan R
    Med Phys; 2004 May; 31(5):1141-52. PubMed ID: 15191303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs.
    Alterovitz R; Lessard E; Pouliot J; Hsu IC; O'Brien JF; Goldberg K
    Med Phys; 2006 Nov; 33(11):4012-9. PubMed ID: 17153381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gEUD-based inverse planning technique for HDR prostate brachytherapy: feasibility study.
    Giantsoudi D; Baltas D; Karabis A; Mavroidis P; Zamboglou N; Tselis N; Shi C; Papanikolaou N
    Med Phys; 2013 Apr; 40(4):041704. PubMed ID: 23556874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy-based inverse planning simulated annealing optimization in high-dose-rate prostate brachytherapy: significant dosimetric advantage over other optimization techniques.
    Jacob D; Raben A; Sarkar A; Grimm J; Simpson L
    Int J Radiat Oncol Biol Phys; 2008 Nov; 72(3):820-7. PubMed ID: 18455325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU-accelerated bi-objective treatment planning for prostate high-dose-rate brachytherapy.
    Bouter A; Alderliesten T; Pieters BR; Bel A; Niatsetski Y; Bosman PAN
    Med Phys; 2019 Sep; 46(9):3776-3787. PubMed ID: 31236948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of dose and catheter optimization algorithms in prostate high-dose-rate brachytherapy.
    Poulin E; Varfalvy N; Aubin S; Beaulieu L
    Brachytherapy; 2016; 15(1):102-11. PubMed ID: 26561276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.
    Yao R; Templeton AK; Liao Y; Turian JV; Kiel KD; Chu JC
    Brachytherapy; 2014; 13(4):352-60. PubMed ID: 24359671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy.
    Nicolae A; Morton G; Chung H; Loblaw A; Jain S; Mitchell D; Lu L; Helou J; Al-Hanaqta M; Heath E; Ravi A
    Int J Radiat Oncol Biol Phys; 2017 Mar; 97(4):822-829. PubMed ID: 28244419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel urethral sparing technique for high-dose-rate prostate brachytherapy after transurethral resection of the prostate.
    Kunogi H; Cunha JAM; Chang AJ; Gadzinski AJ; Shinohara K; Hsu IC
    Brachytherapy; 2017; 16(6):1113-1118. PubMed ID: 28869143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of anatomy-based inverse planning with simulated annealing and graphical optimization for high-dose-rate prostate brachytherapy.
    Morton GC; Sankreacha R; Halina P; Loblaw A
    Brachytherapy; 2008; 7(1):12-6. PubMed ID: 18037356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segment-based dose optimization using a genetic algorithm.
    Cotrutz C; Xing L
    Phys Med Biol; 2003 Sep; 48(18):2987-98. PubMed ID: 14529206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithm and performance of a clinical IMRT beam-angle optimization system.
    Djajaputra D; Wu Q; Wu Y; Mohan R
    Phys Med Biol; 2003 Oct; 48(19):3191-212. PubMed ID: 14579860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of inverse optimization algorithms for HDR/PDR prostate brachytherapy treatment planning.
    Dinkla AM; van der Laarse R; Kaljouw E; Pieters BR; Koedooder K; van Wieringen N; Bel A
    Brachytherapy; 2015; 14(2):279-88. PubMed ID: 25447341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.