BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12696897)

  • 21. Kinetic isotope effects reveal the presence of significant secondary structure in the transition state for the folding of the N-terminal domain of L9.
    Sato S; Raleigh DP
    J Mol Biol; 2007 Jul; 370(2):349-55. PubMed ID: 17512540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hexokinase with broad sugar specificity from a thermophilic bacterium.
    Bae J; Kim D; Choi Y; Koh S; Park JE; Su Kim J; Moon SH; Park BH; Park M; Song HE; Hong SI; Lee DS
    Biochem Biophys Res Commun; 2005 Sep; 334(3):754-63. PubMed ID: 16053915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity of a second Trypanosoma brucei hexokinase is controlled by an 18-amino-acid C-terminal tail.
    Morris MT; DeBruin C; Yang Z; Chambers JW; Smith KS; Morris JC
    Eukaryot Cell; 2006 Dec; 5(12):2014-23. PubMed ID: 17028241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins.
    Sujatha MS; Sasidhar YU; Balaji PV
    Protein Sci; 2004 Sep; 13(9):2502-14. PubMed ID: 15322288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Residues in an ATP binding domain influence sugar binding in a trypanosome hexokinase.
    Chambers JW; Morris MT; Smith KS; Morris JC
    Biochem Biophys Res Commun; 2008 Jan; 365(3):420-5. PubMed ID: 17996732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificity of ligand binding to yeast hexokinase PII studied by STD-NMR.
    Blume A; Fitzen M; Benie AJ; Peters T
    Carbohydr Res; 2009 Aug; 344(12):1567-74. PubMed ID: 19362294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis.
    Heredia VV; Thomson J; Nettleton D; Sun S
    Biochemistry; 2006 Jun; 45(24):7553-62. PubMed ID: 16768451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo phosphorylation and in vitro autophosphorylation-inactivation of Kluyveromyces lactis hexokinase KlHxk1.
    Kettner K; Kuettner EB; Otto A; Lilie H; Golbik RP; Sträter N; Kriegel TM
    Biochem Biophys Res Commun; 2013 May; 435(2):313-8. PubMed ID: 23583397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and in vitro characterization of organometallic rhenium and technetium glucose complexes against Glut 1 and hexokinase.
    Schibli R; Dumas C; Petrig J; Spadola L; Scapozza L; Garcia-Garayoa E; Schubiger PA
    Bioconjug Chem; 2005; 16(1):105-12. PubMed ID: 15656581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absence of 633-nm laser irradiation-induced effects on glucose phosphorylation by hexokinase.
    Heger M; Heemskerk AA; van der Zwan G
    J Photochem Photobiol B; 2010 Mar; 98(3):216-22. PubMed ID: 20149676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of pressure on deuterium isotope effects of yeast alcohol dehydrogenase using alternative substrates.
    Park H; Kidman G; Northrop DB
    Arch Biochem Biophys; 2005 Jan; 433(1):335-40. PubMed ID: 15581588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C.
    Pell G; Williamson MP; Walters C; Du H; Gilbert HJ; Bolam DN
    Biochemistry; 2003 Aug; 42(31):9316-23. PubMed ID: 12899618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-glucopyranosyl urea binding.
    Alexacou KM; Hayes JM; Tiraidis C; Zographos SE; Leonidas DD; Chrysina ED; Archontis G; Oikonomakos NG; Paul JV; Varghese B; Loganathan D
    Proteins; 2008 May; 71(3):1307-23. PubMed ID: 18041758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying energetic contributions to ground state destabilization.
    Anderson VE
    Arch Biochem Biophys; 2005 Jan; 433(1):27-33. PubMed ID: 15581563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of the ATP-binding site in human pancreatic glucokinase.
    Marotta DE; Anand GR; Anderson TA; Miller SP; Okar DA; Levitt DG; Lange AJ
    Arch Biochem Biophys; 2005 Apr; 436(1):23-31. PubMed ID: 15752705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family.
    Kawai S; Mukai T; Mori S; Mikami B; Murata K
    J Biosci Bioeng; 2005 Apr; 99(4):320-30. PubMed ID: 16233797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase.
    Kamata K; Mitsuya M; Nishimura T; Eiki J; Nagata Y
    Structure; 2004 Mar; 12(3):429-38. PubMed ID: 15016359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering the substrate specificity of xylose isomerase.
    Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O
    Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.