BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12696915)

  • 1. Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels.
    Mao F; Mano N; Heller A
    J Am Chem Soc; 2003 Apr; 125(16):4951-7. PubMed ID: 12696915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A laccase-wiring redox hydrogel for efficient catalysis of O2 electroreduction.
    Mano N; Soukharev V; Heller A
    J Phys Chem B; 2006 Jun; 110(23):11180-7. PubMed ID: 16771381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical wiring of Pseudomonas putida and Pseudomonas fluorescens with osmium redox polymers.
    Timur S; Haghighi B; Tkac J; Pazarlioğlu N; Telefoncu A; Gorton L
    Bioelectrochemistry; 2007 Sep; 71(1):38-45. PubMed ID: 17011836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose electrodes based on cross-linked [Os(bpy)2Cl]+/2+ complexed poly(1-vinylimidazole) films.
    Ohara TJ; Rajagopalan R; Heller A
    Anal Chem; 1993 Dec; 65(23):3512-7. PubMed ID: 8297033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer assembly of calf thymus DNA and poly(4-vinylpyridine) derivative bearing [Os(bpy)(2)Cl](2+): redox behavior within DNA film.
    Liu A; Anzai J; Wang J
    Bioelectrochemistry; 2005 Sep; 67(1):1-6. PubMed ID: 15967395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.
    Joshi PP; Merchant SA; Wang Y; Schmidtke DW
    Anal Chem; 2005 May; 77(10):3183-8. PubMed ID: 15889907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode.
    Fei J; Wu Y; Ji X; Wang J; Hu S; Gao Z
    Anal Sci; 2003 Sep; 19(9):1259-63. PubMed ID: 14516076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of glucose oxidase with various metal polypyridine complexes as mediators of glucose oxidation.
    Nakabayashi Y; Nakamura K; Kawachi M; Motoyama T; Yamauchi O
    J Biol Inorg Chem; 2003 Jan; 8(1-2):45-52. PubMed ID: 12459898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving enzyme-electrode contacts by redox modification of cofactors.
    Riklin A; Katz E; Willner I; Stocker A; Bückmann AF
    Nature; 1995 Aug; 376(6542):672-5. PubMed ID: 7651516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme Immobilization and Mediation with Osmium Redox Polymers.
    VandeZande GR; Olvany JM; Rutherford JL; Rasmussen M
    Methods Mol Biol; 2017; 1504():165-179. PubMed ID: 27770421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase.
    Mano N; Yoo JE; Tarver J; Loo YL; Heller A
    J Am Chem Soc; 2007 Jun; 129(22):7006-7. PubMed ID: 17497788
    [No Abstract]   [Full Text] [Related]  

  • 14. A potentially insect-implantable trehalose electrooxidizing anode.
    Pothukuchy A; Mano N; Georgiou G; Heller A
    Biosens Bioelectron; 2006 Dec; 22(5):678-84. PubMed ID: 16546370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2'-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl.
    Videla M; Jacinto JS; Baggio R; Garland MT; Singh P; Kaim W; Slep LD; Olabe JA
    Inorg Chem; 2006 Oct; 45(21):8608-17. PubMed ID: 17029371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle.
    Xiao Y; Patolsky F; Katz E; Hainfeld JF; Willner I
    Science; 2003 Mar; 299(5614):1877-81. PubMed ID: 12649477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and thickness dependence of "molecular wiring" in nanostructured enzyme multilayers.
    Flexer V; Forzani ES; Calvo EJ; Ludueña SJ; Pietrasanta LI
    Anal Chem; 2006 Jan; 78(2):399-407. PubMed ID: 16408920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.
    Zafar MN; Wang X; Sygmund C; Ludwig R; Leech D; Gorton L
    Anal Chem; 2012 Jan; 84(1):334-41. PubMed ID: 22091984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes.
    Cui HF; Ye JS; Zhang WD; Sheu FS
    Biosens Bioelectron; 2009 Feb; 24(6):1723-9. PubMed ID: 18951014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.