BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12697034)

  • 21. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland.
    Sáenz de Miera C; Bothorel B; Jaeger C; Simonneaux V; Hazlerigg D
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8408-8413. PubMed ID: 28716942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Independence of circadian entrainment state and responses to melatonin in male Siberian hamsters.
    Gorman MR
    BMC Physiol; 2003 Oct; 3():10. PubMed ID: 14527347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leptin effects on immune function and energy balance are photoperiod dependent in Siberian hamsters (Phodopus sungorus).
    Drazen DL; Demas GE; Nelson RJ
    Endocrinology; 2001 Jul; 142(7):2768-75. PubMed ID: 11415995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster.
    Revel FG; Saboureau M; Pévet P; Mikkelsen JD; Simonneaux V
    Endocrinology; 2006 Oct; 147(10):4680-7. PubMed ID: 16873538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction.
    Barrett P; Ebling FJ; Schuhler S; Wilson D; Ross AW; Warner A; Jethwa P; Boelen A; Visser TJ; Ozanne DM; Archer ZA; Mercer JG; Morgan PJ
    Endocrinology; 2007 Aug; 148(8):3608-17. PubMed ID: 17478556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of 60 Hz magnetic field exposure on the pineal and hypothalamic-pituitary-gonadal axis in the Siberian hamster (Phodopus sungorus).
    Wilson BW; Matt KS; Morris JE; Sasser LB; Miller DL; Anderson LE
    Bioelectromagnetics; 1999; 20(4):224-32. PubMed ID: 10230936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypothalamic gene expression rapidly changes in response to photoperiod in juvenile Siberian hamsters (Phodopus sungorus).
    Herwig A; Petri I; Barrett P
    J Neuroendocrinol; 2012 Jul; 24(7):991-8. PubMed ID: 22487258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kisspeptin and RFRP3 modulate body mass in Phodopus sungorus via two different neuroendocrine pathways.
    Cázarez-Márquez F; Milesi S; Laran-Chich MP; Klosen P; Kalsbeek A; Simonneaux V
    J Neuroendocrinol; 2019 Apr; 31(4):e12710. PubMed ID: 30887598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals.
    Helfer G; Barrett P; Morgan PJ
    J Neuroendocrinol; 2019 Mar; 31(3):e12680. PubMed ID: 30585661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RFamide-related peptide gene is a melatonin-driven photoperiodic gene.
    Revel FG; Saboureau M; Pévet P; Simonneaux V; Mikkelsen JD
    Endocrinology; 2008 Mar; 149(3):902-12. PubMed ID: 18079200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding.
    Scherbarth F; Steinlechner S
    J Comp Physiol B; 2010 Oct; 180(7):935-52. PubMed ID: 20640428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leptin acts on metabolism in a photoperiod-dependent manner, but has no effect on reproductive function in the seasonally breeding Siberian hamster (Phodopus sungorus).
    Atcha Z; Cagampang FR; Stirland JA; Morris ID; Brooks AN; Ebling FJ; Klingenspor M; Loudon AS
    Endocrinology; 2000 Nov; 141(11):4128-35. PubMed ID: 11089545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms.
    Korf HW
    Gen Comp Endocrinol; 2018 Mar; 258():236-243. PubMed ID: 28511899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoperiodic regulation of glycogen metabolism, glycolysis, and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function.
    Nilaweera K; Herwig A; Bolborea M; Campbell G; Mayer CD; Morgan PJ; Ebling FJ; Barrett P
    Glia; 2011 Nov; 59(11):1695-705. PubMed ID: 21769945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoperiod can entrain circannual rhythms in pinealectomized European hamsters.
    Monecke S; Sage-Ciocca D; Wollnik F; Pévet P
    J Biol Rhythms; 2013 Aug; 28(4):278-90. PubMed ID: 23929555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short photoperiods alter cannabinoid receptor expression in hypothalamic nuclei related to energy balance.
    Weil ZM; Workman JL; Karelina K; Nelson RJ
    Neurosci Lett; 2011 Mar; 491(2):99-103. PubMed ID: 21232581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoperiod-dependent regulation of carboxypeptidase E affects the selective processing of neuropeptides in the seasonal Siberian hamster (Phodopus sungorus).
    Helwig M; Herwig A; Heldmaier G; Barrett P; Mercer JG; Klingenspor M
    J Neuroendocrinol; 2013 Feb; 25(2):190-7. PubMed ID: 22967033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of anterior hypothalamic lesions on short-day responses in Siberian hamsters given timed melatonin infusions.
    Song CK; Bartness TJ
    J Biol Rhythms; 1996 Mar; 11(1):14-26. PubMed ID: 8695888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Siberian hamster as a model for study of the mammalian photoperiodic mechanism.
    Goldman BD
    Adv Exp Med Biol; 1999; 460():155-64. PubMed ID: 10810510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.