These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12697316)

  • 41. Monocyte-vascular smooth muscle cell interaction enhances nitric oxide production.
    Ikeda U; Maeda Y; Funayama H; Hojo Y; Ikeda M; Minota S; Kano S; Shimada K
    Cardiovasc Res; 1998 Mar; 37(3):820-5. PubMed ID: 9659467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virgin olive oil and its phenol fraction modulate monocyte/macrophage functionality: a potential therapeutic strategy in the treatment of systemic lupus erythematosus.
    Aparicio-Soto M; Montserrat-de la Paz S; Sanchez-Hidalgo M; Cardeno A; Bermudez B; Muriana FJG; Alarcon-de-la-Lastra C
    Br J Nutr; 2018 Sep; 120(6):681-692. PubMed ID: 30060774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High levels of nitric oxide production decrease early but increase late survival of Brucella abortus in macrophages.
    Wang M; Qureshi N; Soeurt N; Splitter G
    Microb Pathog; 2001 Nov; 31(5):221-30. PubMed ID: 11710842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An antiviral effect of nitric oxide: inhibition of reovirus replication.
    Pertile TL; Karaca K; Sharma JM; Walser MM
    Avian Dis; 1996; 40(2):342-8. PubMed ID: 8790884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase-1 induction and blockade of activator protein-1.
    Park PH; Kim HS; Jin XY; Jin F; Hur J; Ko G; Sohn DH
    Eur J Pharmacol; 2009 Mar; 606(1-3):215-24. PubMed ID: 19174156
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coordinate regulation of nitric oxide and 1,25-dihydroxyvitamin D production in the avian myelomonocytic cell line HD-11.
    Adams JS; Ren SY; Arbelle JE; Shany S; Gacad MA
    Endocrinology; 1995 May; 136(5):2262-9. PubMed ID: 7536666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of the inducible NO synthase in human monocytic U937 cells allows high output nitric oxide production.
    Bertholet S; Tzeng E; Felley-Bosco E; Mauël J
    J Leukoc Biol; 1999 Jan; 65(1):50-8. PubMed ID: 9886246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide production by a murine macrophage cell line (RAW264.7 cells) stimulated with Aggregatibacter actinomycetemcomitans surface-associated material.
    Sosroseno W; Bird PS; Seymour GJ
    Anaerobe; 2011 Oct; 17(5):246-51. PubMed ID: 21736946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines.
    He H; Genovese KJ; Kogut MH
    Cytokine; 2011 Mar; 53(3):363-9. PubMed ID: 21208811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of long chain fatty acids on Salmonella killing, superoxide and nitric oxide production by chicken macrophages.
    Babu U; Wiesenfeld P; Gaines D; Raybourne RB
    Int J Food Microbiol; 2009 Jun; 132(1):67-72. PubMed ID: 19375809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dual effects of oxidized low-density lipoprotein on immune-stimulated nitric oxide and prostaglandin release in macrophages.
    Matthys KE; Van Hove CE; Jorens PG; Rosseneu M; Marescau B; Herman AG; Bult H
    Eur J Pharmacol; 1996 Feb; 298(1):97-103. PubMed ID: 8867925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chicken cystatin stimulates nitric oxide release from interferon-gamma-activated mouse peritoneal macrophages via cytokine synthesis.
    Verdot L; Lalmanach G; Vercruysse V; Hoebeke J; Gauthier F; Vray B
    Eur J Biochem; 1999 Dec; 266(3):1111-7. PubMed ID: 10583408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of inducible nitric oxide synthase messenger RNA expression and nitric oxide production by lipopolysaccharide in vivo: the roles of macrophages, endogenous IFN-gamma, and TNF receptor-1-mediated signaling.
    Salkowski CA; Detore G; McNally R; van Rooijen N; Vogel SN
    J Immunol; 1997 Jan; 158(2):905-12. PubMed ID: 8993010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of the phosphodiesterase III inhibitor amrinone on cytokine and nitric oxide production in immunostimulated J774.1 macrophages.
    Németh ZH; Szabó C; Haskó G; Salzman AL; Vizi ES
    Eur J Pharmacol; 1997 Nov; 339(2-3):215-21. PubMed ID: 9473138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes.
    Skorokhod OA; Schwarzer E; Ceretto M; Arese P
    Malar J; 2007 Jun; 6():73. PubMed ID: 17543124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitric oxide (.NO)-induced mitochondrial injury among chicken .NO-generating and target leukocytes.
    Sung YJ; Dietert RR
    J Leukoc Biol; 1994 Jul; 56(1):52-8. PubMed ID: 8027670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production.
    Murphy C; Newsholme P
    Clin Sci (Lond); 1998 Oct; 95(4):397-407. PubMed ID: 9748415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages.
    Lee CC; Wu CC; Lin TL
    Arch Virol; 2015 Dec; 160(12):3021-35. PubMed ID: 26392283
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chicken scavenger receptors and their ligand-induced cellular immune responses.
    He H; MacKinnon KM; Genovese KJ; Nerren JR; Swaggerty CL; Nisbet DJ; Kogut MH
    Mol Immunol; 2009 Jul; 46(11-12):2218-25. PubMed ID: 19446336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars.
    He H; Genovese KJ; Swaggerty CL; Nisbet DJ; Kogut MH
    Foodborne Pathog Dis; 2012 Dec; 9(12):1104-10. PubMed ID: 23067396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.