BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12697528)

  • 1. Cardiovascular peripheral effector mechanism in postflight orthostatic intolerance: a simulation study.
    Hao WY; Zhang LF; Wu XY
    J Gravit Physiol; 2000 Jul; 7(2):P151-2. PubMed ID: 12697528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of depressed myocardial contractility induced by microgravity on cardiovascular response to orthostatic stress: a computer simulation.
    Hao WY; Bai J; Zhang WY; Wu XY; Zhang LF
    Comput Cardiol; 2001; 28():349-52. PubMed ID: 14640094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A simulated study of effects of simulated hypovolemia on cardiovascular response to orthostatic stress].
    Hao WY; Zhang LF; Wu XY; Zhang WY
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):259-62. PubMed ID: 11892747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The changes of cardiovascular response to orthostatic stress caused by hypovolemia induced by weightlessness: a simulation study].
    Hao W; Bai J; Zhang L; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):48-52. PubMed ID: 11951522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A simulation study of effects of depressed myocardial contractility on cardiovascular response to lower body negative pressure].
    Hao WY; Zhang LF; Wu XY; Bai J
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):253-6. PubMed ID: 11681336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of control of the cardiovascular-respiratory system during orthostatic stress induced by lower body negative pressure.
    Kappel F; Fink M; Batzel JJ
    Math Biosci; 2007 Apr; 206(2):273-308. PubMed ID: 16938315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral effector mechanism hypothesis of postflight cardiovascular dysfunction.
    Zhang LF; Yu ZB; Ma J; Mao QW
    Aviat Space Environ Med; 2001 Jun; 72(6):567-75. PubMed ID: 11396563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of simulated microgravity on cardiovascular function and counter effect of lower body negative pressure].
    Sun XQ; Jiang SZ; Yao YJ; Jiang CL; Hao WY; Wu XY
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):235-40. PubMed ID: 12422854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The progress in research on the mechanisms of the effects of blood volume reduction on orthostatic tolerance after microgravity or simulated microgravity].
    Wang DS; Ren W; Xiang QL; Sun L
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):152-6. PubMed ID: 11543055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoconstrictor responsiveness of hind body vascular beds is diminished in tail-suspended rats.
    Ma J; Zhang LN; Zhang LF
    J Gravit Physiol; 2000 Jul; 7(2):P153-4. PubMed ID: 12697527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model of depressed myocardium shows orthostatic intolerance with or without reduced blood volume.
    Hao WY; Bai J; Zhang LF; Wu XY; Ying K
    Aviat Space Environ Med; 2004 Dec; 75(12):1058-64. PubMed ID: 15619860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of blood volume loss on cardiovascular response to lower body negative pressure using a mathematical model.
    Karam EH; Srinivasan RS; Charles JB; Fortney SM
    J Gravit Physiol; 1994 May; 1(1):P96-7. PubMed ID: 11538780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models of cardiovascular function for analysis of post-flight orthostatic intolerance.
    Heldt T; Shim EB; Kamm RD; Mark RG
    Comput Cardiol; 1999; 26():213-6. PubMed ID: 11795340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model based characterization of microgravity induced alterations of CVS-regulation.
    Asteroth A; Frings J; Moller K; Beck L; Drescher J
    J Gravit Physiol; 1998 Jul; 5(1):P43-4. PubMed ID: 11542359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasoconstrictor reserve and sympathetic neural control of orthostasis.
    Fu Q; Witkowski S; Levine BD
    Circulation; 2004 Nov; 110(18):2931-7. PubMed ID: 15505093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of overall mathematical models of the cardiovascular system for simulating response to orthostatic stresses.
    Karam EH; Srinivasan RS; Charles JB
    Physiologist; 1993; 36(1 Suppl):S164-5. PubMed ID: 11537423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preservation of veno-arteriolar reflex in the skin following 20 days of head down bed rest in humans.
    Gabrielsen A; Suzuki Y; Norsk P
    J Gravit Physiol; 1999 Jul; 6(1):P103-4. PubMed ID: 11542977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral vascular changes after short-term simulated microgravity.
    Raimondi G; Legramante JM; Iellamo F; Cassarino S; Micozzi F; Sacco S; Peruzzi G
    J Gravit Physiol; 1998 Jul; 5(1):P49-50. PubMed ID: 11542362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity.
    Cornish KG; Hughes K; Dreessen A; Olguin M
    Aviat Space Environ Med; 1999 Aug; 70(8):773-9. PubMed ID: 10447051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of arterial vasculature during simulated weightlessness and its possible role in the genesis of postflight orthostatic intolerance.
    Zhang LF; Ma J; Mao QW; Yu ZB
    J Gravit Physiol; 1997 Jul; 4(2):P97-100. PubMed ID: 11540713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.