These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12698216)

  • 1. Chemical ablation of sensory afferents in the walking system of the cat abolishes the capacity for functional recovery after peripheral nerve lesions.
    Pearson KG; Misiaszek JE; Hulliger M
    Exp Brain Res; 2003 May; 150(1):50-60. PubMed ID: 12698216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.
    Gregor RJ; Maas H; Bulgakova MA; Oliver A; English AW; Prilutsky BI
    J Neurophysiol; 2018 Mar; 119(3):1166-1185. PubMed ID: 29187556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of reflexes from the foot during locomotion after denervating ankle extensors in intact cats.
    Frigon A; Rossignol S
    J Neurophysiol; 2007 Oct; 98(4):2122-32. PubMed ID: 17652411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in reflex pathways controlling stepping in the cat.
    Whelan PJ; Pearson KG
    J Neurophysiol; 1997 Sep; 78(3):1643-50. PubMed ID: 9310449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive changes in motor activity associated with functional recovery following muscle denervation in walking cats.
    Pearson KG; Fouad K; Misiaszek JE
    J Neurophysiol; 1999 Jul; 82(1):370-81. PubMed ID: 10400965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists.
    Maas H; Gregor RJ; Hodson-Tole EF; Farrell BJ; English AW; Prilutsky BI
    Exp Brain Res; 2010 Jun; 203(4):681-92. PubMed ID: 20458472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of neuronal networks in the spinal cord: modifications in response to altered sensory input.
    Pearson KG
    Prog Brain Res; 2000; 128():61-70. PubMed ID: 11105669
    [No Abstract]   [Full Text] [Related]  

  • 9. Reorganization of motor modules for standing reactive balance recovery following pyridoxine-induced large-fiber peripheral sensory neuropathy in cats.
    Payne AM; Sawers A; Allen JL; Stapley PJ; Macpherson JM; Ting LH
    J Neurophysiol; 2020 Sep; 124(3):868-882. PubMed ID: 32783597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive changes in locomotor activity following botulinum toxin injection in ankle extensor muscles of cats.
    Misiaszek JE; Pearson KG
    J Neurophysiol; 2002 Jan; 87(1):229-39. PubMed ID: 11784745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM; Pearson KG
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats.
    Pearson KG; Ramirez JM; Jiang W
    Exp Brain Res; 1992; 90(3):557-66. PubMed ID: 1426112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy.
    Bouyer LJ; Whelan PJ; Pearson KG; Rossignol S
    J Neurosci; 2001 May; 21(10):3531-41. PubMed ID: 11331382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity.
    Lyle MA; Prilutsky BI; Gregor RJ; Abelew TA; Nichols TR
    J Neurophysiol; 2016 Sep; 116(3):1055-67. PubMed ID: 27306676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive changes in locomotor control after partial denervation of triceps surae muscles in the cat.
    Gritsenko V; Mushahwar V; Prochazka A
    J Physiol; 2001 May; 533(Pt 1):299-311. PubMed ID: 11351036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive muscle plasticity of a remaining agonist following denervation of its close synergists in a model of complete spinal cord injury.
    Dambreville C; Charest J; Thibaudier Y; Hurteau MF; Kuczynski V; Grenier G; Frigon A
    J Neurophysiol; 2016 Sep; 116(3):1366-74. PubMed ID: 27358318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man.
    Sinkjaer T; Andersen JB; Ladouceur M; Christensen LO; Nielsen JB
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):817-27. PubMed ID: 10718758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of self-reinnervation of cat medial and lateral gastrocnemius muscles on hindlimb kinematics in slope walking.
    Maas H; Prilutsky BI; Nichols TR; Gregor RJ
    Exp Brain Res; 2007 Aug; 181(2):377-93. PubMed ID: 17406860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional role of muscle reflexes for force generation in the decerebrate walking cat.
    Stein RB; Misiaszek JE; Pearson KG
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):781-91. PubMed ID: 10856129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Sep; 100(3):1513-22. PubMed ID: 18614755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.