These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 12699649)

  • 1. TEM study of calcium phosphate precipitation on HA/TCP ceramics.
    Leng Y; Chen J; Qu S
    Biomaterials; 2003 Jun; 24(13):2125-31. PubMed ID: 12699649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.
    Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD
    J Mater Sci Mater Med; 2004 Nov; 15(11):1205-11. PubMed ID: 15880929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEM study of calcium phosphate precipitation on bioactive titanium surfaces.
    Lu X; Leng Y
    Biomaterials; 2004 May; 25(10):1779-86. PubMed ID: 14738841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.
    Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD
    J Mater Sci Mater Med; 2005 Sep; 16(9):795-801. PubMed ID: 16167107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A study of bone-like apatite formation on porous calcium phosphate ceramics in dynamic SBF].
    Duan Y; Yao Z; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):365-9. PubMed ID: 12557498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.
    Morimoto S; Anada T; Honda Y; Suzuki O
    Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of calcium phosphate precipitation in simulated body fluid.
    Lu X; Leng Y
    Biomaterials; 2005 Apr; 26(10):1097-108. PubMed ID: 15451629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological control of apatite growth in simulated body fluid and human blood serum.
    Juhasz JA; Best SM; Auffret AD; Bonfield W
    J Mater Sci Mater Med; 2008 Apr; 19(4):1823-9. PubMed ID: 18157508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid.
    Kim HM; Himeno T; Kokubo T; Nakamura T
    Biomaterials; 2005 Jul; 26(21):4366-73. PubMed ID: 15701365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics.
    Kong YM; Kim HE; Kim HW
    J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid.
    Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M
    Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo].
    Duan Y; Wu Y; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic: influence of the implantation site.
    Rohanizadeh R; Trécant-Viana M; Daculsi G
    Calcif Tissue Int; 1999 May; 64(5):430-6. PubMed ID: 10203420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.