BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 12699652)

  • 1. Novel bioactive materials with different mechanical properties.
    Kokubo T; Kim HM; Kawashita M
    Biomaterials; 2003 Jun; 24(13):2161-75. PubMed ID: 12699652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing bioactive composite materials for tissue replacement.
    Wang M
    Biomaterials; 2003 Jun; 24(13):2133-51. PubMed ID: 12699650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive metals: preparation and properties.
    Kokubo T; Kim HM; Kawashita M; Nakamura T
    J Mater Sci Mater Med; 2004 Feb; 15(2):99-107. PubMed ID: 15330042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing.
    Miyazaki T; Ohtsuki C; Tanihara M
    J Nanosci Nanotechnol; 2003 Dec; 3(6):511-5. PubMed ID: 15002131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.
    Kokubo T; Yamaguchi S
    Acta Biomater; 2016 Oct; 44():16-30. PubMed ID: 27521496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bonding strength of bonelike apatite layer to Ti metal substrate.
    Kim HM; Miyaji F; Kokubo T; Nakamura T
    J Biomed Mater Res; 1997; 38(2):121-7. PubMed ID: 9178739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid.
    Miyaza T; Kim HM; Kokubo T; Ohtsuki C; Kato H; Nakamura T
    Biomaterials; 2002 Feb; 23(3):827-32. PubMed ID: 11771702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-assisted synthesis of polyvinylpyrrolidone-hydroxyapatite composites as a bone filler.
    Meskinfam Langroudi M; Giahi Saravani M; Nouri A
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e334-e340. PubMed ID: 28430344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects.
    El-Ghannam A; Amin H; Nasr T; Shama A
    Int J Oral Maxillofac Implants; 2004; 19(2):184-91. PubMed ID: 15101588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-Inorganic Composites Toward Biomaterial Application.
    Miyazaki T; Sugawara-Narutaki A; Ohtsuki C
    Front Oral Biol; 2015; 17():33-8. PubMed ID: 26201274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on a new type of apatite/wollastonite porous bioactive glass-ceramic].
    Yang W; Zhou D; Yin G; Chen H; Xiao B; Zhang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):913-6. PubMed ID: 15646331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.
    Sprio S; Guicciardi S; Dapporto M; Melandri C; Tampieri A
    J Mech Behav Biomed Mater; 2013 Jan; 17():1-10. PubMed ID: 23122887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges.
    Kaur G; Kumar V; Baino F; Mauro JC; Pickrell G; Evans I; Bretcanu O
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109895. PubMed ID: 31500047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceramic bioactivity: progresses, challenges and perspectives.
    Lee KY; Park M; Kim HM; Lim YJ; Chun HJ; Kim H; Moon SH
    Biomed Mater; 2006 Jun; 1(2):R31-7. PubMed ID: 18460754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and properties of crystalline bioglass compositions prepared by polymeric route.
    Doreya MI; Mona EW; Afaf ES; Hanan HB
    Med J Malaysia; 2004 May; 59 Suppl B():21-2. PubMed ID: 15468799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.