BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 12699652)

  • 21. Organic-inorganic composites designed for biomedical applications.
    Miyazaki T; Ishikawa K; Shirosaki Y; Ohtsuki C
    Biol Pharm Bull; 2013; 36(11):1670-5. PubMed ID: 24189410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic.
    Kalantari E; Naghib SM
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1087-1096. PubMed ID: 30812992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 May; 55(2):185-93. PubMed ID: 11255170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characteristics of monticellite bioactive ceramic.
    Chen X; Ou J; Kang Y; Huang Z; Zhu H; Yin G; Wen H
    J Mater Sci Mater Med; 2008 Mar; 19(3):1257-63. PubMed ID: 17701388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Research development and prospect of calcium phosphate biomaterials with intrinsic osteoinductivity].
    Bao C; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):442-5, 454. PubMed ID: 16706385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.
    Chen QZ; Li Y; Jin LY; Quinn JM; Komesaroff PA
    Acta Biomater; 2010 Oct; 6(10):4143-53. PubMed ID: 20447473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size.
    Juhasz JA; Best SM; Brooks R; Kawashita M; Miyata N; Kokubo T; Nakamura T; Bonfield W
    Biomaterials; 2004 Mar; 25(6):949-55. PubMed ID: 14615158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of osteoconductive organic inorganic nanohybrids through modification of chitin with alkoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Ashizuka M
    J Biomater Appl; 2007 Jul; 22(1):71-81. PubMed ID: 17065165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.
    Hesaraki S; Safari M; Shokrgozar MA
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation.
    Kaur G; Pandey OP; Singh K; Homa D; Scott B; Pickrell G
    J Biomed Mater Res A; 2014 Jan; 102(1):254-74. PubMed ID: 23468256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates.
    Ma J; Wang J; Ai X; Zhang S
    Biotechnol Adv; 2014; 32(4):744-60. PubMed ID: 24211471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processing-microstructure-property relations in HVOF sprayed calcium phosphate based bioceramic coatings.
    Khor KA; Li H; Cheang P
    Biomaterials; 2003 Jun; 24(13):2233-43. PubMed ID: 12699659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique.
    Dong Y; Liang J; Cui Y; Xu S; Zhao N
    Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration.
    Paramita P; Ramachandran M; Narashiman S; Nagarajan S; Sukumar DK; Chung TW; Ambigapathi M
    J Mater Sci Mater Med; 2021 Jan; 32(1):5. PubMed ID: 33471255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composite bone substitute materials based on beta-tricalcium phosphate and magnesium-containing sol-gel derived bioactive glass.
    Hesaraki S; Safari M; Shokrgozar MA
    J Mater Sci Mater Med; 2009 Oct; 20(10):2011-7. PubMed ID: 19466530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bioactive titanium foam scaffold for bone repair.
    Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI
    Acta Biomater; 2005 Sep; 1(5):523-33. PubMed ID: 16701832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.