These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12699657)

  • 41. Modification of polyurethane surface with an antithrombin-heparin complex for blood contact: influence of molecular weight of polyethylene oxide used as a linker/spacer.
    Sask KN; Berry LR; Chan AK; Brash JL
    Langmuir; 2012 Jan; 28(4):2099-106. PubMed ID: 22149666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physicochemical properties and platelet interactions of segmented polyurethanes containing sulfonate groups in the hard segment.
    Skarja GA; Brash JL
    J Biomed Mater Res; 1997 Mar; 34(4):439-55. PubMed ID: 9054528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface modification of polymeric biomaterials: utilization of cyclodextrins for blood compatibility improvement.
    Zhao X; Courtney JM
    J Biomed Mater Res A; 2007 Mar; 80(3):539-53. PubMed ID: 17019727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS-polyurethane-HEMA hydrogel.
    Lin CH; Jao WC; Yeh YH; Lin WC; Yang MC
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):132-41. PubMed ID: 19157804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel anti-calcification treatment of biological tissues by grafting of sulphonated poly(ethylene oxide).
    Park KD; Lee WK; Yun JY; Han DK; Kim SH; Kim YH; Kim HM; Kim KT
    Biomaterials; 1997 Jan; 18(1):47-51. PubMed ID: 9003896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial behaviour of 'new' poly(ethylene oxide)-containing copolymers.
    Malmsten M; Muller D
    J Biomater Sci Polym Ed; 1999; 10(10):1075-87. PubMed ID: 10591133
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heparin immobilization by surface amplification.
    Piao AZ; Jacobs HA; Park KD; Kim SW
    ASAIO J; 1992; 38(3):M638-43. PubMed ID: 1457939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression mechanisms for thrombus formation on heparin-immobilized segmented polyurethane-ureas.
    Nojiri C; Okano T; Park KD; Kim SW
    ASAIO Trans; 1988; 34(3):386-98. PubMed ID: 3196537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of polyol type on the surface structure of sulfonate-containing polyurethanes.
    Silver JH; Lewis KB; Ratner BD; Cooper SL
    J Biomed Mater Res; 1993 Jun; 27(6):735-45. PubMed ID: 8408103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations.
    Jung IK; Bae JW; Choi WS; Choi JH; Park KD
    J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of polylactide surfaces with lactide-ethylene oxide functional block copolymers: accessibility of functional groups.
    Tresohlavá E; Popelka S; Machová L; Rypácek F
    Biomacromolecules; 2010 Jan; 11(1):68-75. PubMed ID: 19954220
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes.
    Han DK; Park KD; Ahn KD; Jeong SY; Kim YH
    J Biomed Mater Res; 1989 Apr; 23(A1 Suppl):87-104. PubMed ID: 2722907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MMA/MPEOMA/VSA copolymer as a novel blood-compatible material: ex vivo platelet adhesion study.
    Lee JH; Oh SH; Kim WG
    J Mater Sci Mater Med; 2004 Feb; 15(2):155-9. PubMed ID: 15330050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.
    Chung TW; Liu DZ; Wang SY; Wang SS
    Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces.
    Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW
    J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of proteins from infant and adult plasma to biomaterial surfaces.
    Cornelius RM; Archambault JG; Berry L; Chan AK; Brash JL
    J Biomed Mater Res; 2002 Jun; 60(4):622-32. PubMed ID: 11948521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocompatibility of polysulfone II. Platelet adhesion and cho cell growth.
    Khang G; Jeong BJ; Lee HB; Park JB
    Biomed Mater Eng; 1995; 5(4):259-73. PubMed ID: 8785510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Poly(ethylene oxide) layers grafted to dopamine-melanin anchoring layer: stability and resistance to protein adsorption.
    Pop-Georgievski O; Popelka Š; Houska M; Chvostová D; Proks V; Rypáček F
    Biomacromolecules; 2011 Sep; 12(9):3232-42. PubMed ID: 21823677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces: influence of PEO chain length, grafting density, and temperature.
    Norde W; Gage D
    Langmuir; 2004 May; 20(10):4162-7. PubMed ID: 15969411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.