These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 12699664)
1. Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Uemura T; Dong J; Wang Y; Kojima H; Saito T; Iejima D; Kikuchi M; Tanaka J; Tateishi T Biomaterials; 2003 Jun; 24(13):2277-86. PubMed ID: 12699664 [TBL] [Abstract][Full Text] [Related]
2. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials. Wang Y; Uemura T; Dong J; Kojima H; Tanaka J; Tateishi T Tissue Eng; 2003 Dec; 9(6):1205-14. PubMed ID: 14670108 [TBL] [Abstract][Full Text] [Related]
3. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388 [TBL] [Abstract][Full Text] [Related]
4. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686 [TBL] [Abstract][Full Text] [Related]
5. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
6. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930 [TBL] [Abstract][Full Text] [Related]
7. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459 [TBL] [Abstract][Full Text] [Related]
8. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323 [TBL] [Abstract][Full Text] [Related]
9. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts. Nan K; Sun S; Li Y; Chen H; Wu T; Lu F J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839 [TBL] [Abstract][Full Text] [Related]
10. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366 [TBL] [Abstract][Full Text] [Related]
11. Tissue engineering of bone: search for a better scaffold. Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608 [TBL] [Abstract][Full Text] [Related]
12. Enhanced bone formation in the vicinity of porous β-TCP scaffolds exhibiting slow release of collagen-derived tripeptides. Kamikura K; Minatoya T; Terada-Nakaishi M; Yamamoto S; Sakai Y; Furusawa T; Matsushima Y; Unuma H J Mater Sci Mater Med; 2017 Sep; 28(9):132. PubMed ID: 28744614 [TBL] [Abstract][Full Text] [Related]
13. Recent development on porous calcium phosphate ceramics for biomedical application. Sopyan I Med J Malaysia; 2008 Jul; 63 Suppl A():14-5. PubMed ID: 19024961 [TBL] [Abstract][Full Text] [Related]
14. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Dong J; Uemura T; Shirasaki Y; Tateishi T Biomaterials; 2002 Dec; 23(23):4493-502. PubMed ID: 12322969 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
16. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Jafarian M; Eslaminejad MB; Khojasteh A; Mashhadi Abbas F; Dehghan MM; Hassanizadeh R; Houshmand B Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 May; 105(5):e14-24. PubMed ID: 18442730 [TBL] [Abstract][Full Text] [Related]
17. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
18. A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering. Iejima D; Saito T; Uemura T J Biomater Sci Polym Ed; 2003; 14(10):1097-103. PubMed ID: 14661881 [TBL] [Abstract][Full Text] [Related]
19. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
20. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold. Nair MB; Varma HK; Menon KV; Shenoy SJ; John A J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]