BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12699680)

  • 1. Development of in situ thermosensitive drug vehicles for glaucoma therapy.
    Hsiue GH; Chang RW; Wang CH; Lee SH
    Biomaterials; 2003 Jun; 24(13):2423-30. PubMed ID: 12699680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide.
    Hsiue GH; Hsu SH; Yang CC; Lee SH; Yang IK
    Biomaterials; 2002 Jan; 23(2):457-62. PubMed ID: 11761166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing of a pH-Triggered Carbopol®/HPMC In Situ Gel for Ocular Delivery of Dorzolamide HCl: In Vitro, In Vivo, and Ex Vivo Evaluation.
    Kouchak M; Mahmoodzadeh M; Farrahi F
    AAPS PharmSciTech; 2019 Jun; 20(5):210. PubMed ID: 31161269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study.
    Singh J; Chhabra G; Pathak K
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1223-32. PubMed ID: 23837522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation and ex vivo-in vivo evaluation of pH-triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 3
    Barse RK; Tagalpallewar AA; Kokare CR; Sharma JP; Sharma PK
    Drug Dev Ind Pharm; 2018 May; 44(5):800-807. PubMed ID: 29228819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits.
    Fouda NH; Abdelrehim RT; Hegazy DA; Habib BA
    Drug Deliv; 2018 Nov; 25(1):1340-1349. PubMed ID: 29869516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of ophthalmic formulations containing cilostazol as an anti-glaucoma agent and improvement in its permeability through the rabbit cornea.
    Okamoto N; Ito Y; Nagai N; Murao T; Takiguchi Y; Kurimoto T; Mimura O
    J Oleo Sci; 2010; 59(8):423-30. PubMed ID: 20625234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular hypotensive efficacy of topical epinephrine in normotensive and hypertensive rabbits: continuous drug delivery vs eyedrops.
    Birss SA; Longwell A; Heckbert S; Keller N
    Ann Ophthalmol; 1978 Aug; 10(8):1045-54. PubMed ID: 29554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio.
    Lai JY
    Drug Des Devel Ther; 2013; 7():1273-85. PubMed ID: 24187486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies.
    Hathout RM; Mansour S; Mortada ND; Guinedi AS
    AAPS PharmSciTech; 2007 Jan; 8(1):1. PubMed ID: 17408209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery.
    Cao Y; Zhang C; Shen W; Cheng Z; Yu LL; Ping Q
    J Control Release; 2007 Jul; 120(3):186-94. PubMed ID: 17582643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy.
    Gupta S; Samanta MK; Raichur AM
    AAPS PharmSciTech; 2010 Mar; 11(1):322-35. PubMed ID: 20182824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide.
    Morsi N; Ibrahim M; Refai H; El Sorogy H
    Eur J Pharm Sci; 2017 Jun; 104():302-314. PubMed ID: 28433750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetics and intraocular pressure lowering effect of timolol preparations in rabbit eyes.
    Chiang CH; Ho JI; Chen JL
    J Ocul Pharmacol Ther; 1996; 12(4):471-80. PubMed ID: 8951683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DenTimol as A Dendrimeric Timolol Analogue for Glaucoma Therapy: Synthesis and Preliminary Efficacy and Safety Assessment.
    Lancina MG; Wang J; Williamson GS; Yang H
    Mol Pharm; 2018 Jul; 15(7):2883-2889. PubMed ID: 29767982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs.
    Prasannan A; Tsai HC; Chen YS; Hsiue GH
    J Mater Chem B; 2014 Apr; 2(14):1988-1997. PubMed ID: 32261635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progression of drug delivery system for glaucoma].
    Xu Y; Lyu L
    Zhonghua Yan Ke Za Zhi; 2014 Dec; 50(12):946-51. PubMed ID: 25619186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Topical prostaglandins influence over cornea--preliminary report].
    Wierzbowska J; Stankiewicz A
    Klin Oczna; 2006; 108(10-12):479-81. PubMed ID: 17455732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A poly(ε-caprolactone) device for sustained release of an anti-glaucoma drug.
    Natu MV; Gaspar MN; Ribeiro CA; Correia IJ; Silva D; de Sousa HC; Gil MH
    Biomed Mater; 2011 Apr; 6(2):025003. PubMed ID: 21293056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.