These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12699827)

  • 1. The revision of the model of primary energy conversion in purple bacteria.
    Borisov AY; Sidorin YM
    Bioelectrochemistry; 2003 Apr; 59(1-2):113-9. PubMed ID: 12699827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of excitation trapping in reaction centers of purple bacteria.
    Borisov AY
    Biochemistry (Mosc); 2003 Feb; 68(2):152-61. PubMed ID: 12693960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New concept of energy migration and trapping in purple bacteria. Charge transfer-polaron model.
    Borisov AYu
    Biochem Mol Biol Int; 1995 Apr; 35(4):833-40. PubMed ID: 7627132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the efficiency of the long wavelength minor bacteriochlorophyll groups in the vicinity of reaction centers.
    Borisov AY
    J Photochem Photobiol B; 2010 Dec; 101(3):191-5. PubMed ID: 20833061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Features of Bacteriochlorophylls Axial Ligation in the Photosynthetic Reaction Center of Purple Bacteria.
    Fufina TY; Leonova MM; Khatypov RA; Khristin AM; Shuvalov VA; Vasilieva LG
    Biochemistry (Mosc); 2019 Apr; 84(4):370-379. PubMed ID: 31228928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique features of the 'photo-energetics' of purple bacteria: a critical survey by the late Aleksandr Yuryevich Borisov (1930-2019).
    Govindjee ; Razjivin AP; Kozlovsky VS
    Photosynth Res; 2020 Dec; 146(1-3):17-24. PubMed ID: 31655967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural specificity of photosynthetic reaction centers provides high efficiency of excitation trapping and conversion.
    Borisov AY
    Biochemistry (Mosc); 2004 Jul; 69(7):813-7. PubMed ID: 15310284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved spectroscopy of energy transfer and trapping upon selective excitation in membranes of Heliobacillus mobilis at low temperature.
    Chiou HC; Lin S; Blankenship RE
    J Phys Chem B; 1997 May; 101(20):4136-41. PubMed ID: 11540131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the involvement of the water-polaron mechanism in energy trapping by reaction centers of purple bacteria.
    Borisov AY; Kuznetsova SA
    Biochemistry (Mosc); 2002 Nov; 67(11):1224-9. PubMed ID: 12495417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy migration in purple bacteria. The criterion for discrimination between migration- and trapping-limited photosynthetic units.
    Borisov AY
    Photosynth Res; 1990 Mar; 23(3):283-9. PubMed ID: 24419651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes.
    Trinkunas G; Holzwarth AR
    Biophys J; 1996 Jul; 71(1):351-64. PubMed ID: 8804618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The widely accepted model of primary photosynthetic processes in purple bacteria must be revised.
    Borisov AY
    Biochemistry (Mosc); 2000 Nov; 65(11):1266-71. PubMed ID: 11112842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why is electron transport in the reaction centers of purple bacteria unidirectional?
    Borisov AY
    Biochemistry (Mosc); 2000 Dec; 65(12):1429-34. PubMed ID: 11173516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of energy transformation in antenna reaction center complexes of Heliobacillus mobilis.
    Neerken S; Aartsma TJ; Amesz J
    Biochemistry; 2000 Mar; 39(12):3297-303. PubMed ID: 10727221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a--protein antenna trimers from the green bacterium Chlorobium tepidum.
    Savikhin S; Zhou W; Blankenship RE; Struve WS
    Biophys J; 1994 Jan; 66(1):110-3. PubMed ID: 8130329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of photochemical stages of photosynthesis in purple bacteria (a critical survey).
    Borisov AY
    Biochemistry (Mosc); 2014 Mar; 79(3):227-34. PubMed ID: 24821449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria.
    Jang S; Newton MD; Silbey RJ
    J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation delocalization over the whole core antenna of photosynthetic purple bacteria evidenced by non-linear pump-probe spectroscopy.
    Novoderezhkin VI; Razjivin AP
    FEBS Lett; 1995 Jul; 368(2):370-2. PubMed ID: 7628640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential pathways for light-trapping involving beta-ligated chlorophylls.
    Balaban TS; Braun P; Hättig C; Hellweg A; Kern J; Saenger W; Zouni A
    Biochim Biophys Acta; 2009 Oct; 1787(10):1254-65. PubMed ID: 19481055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence and significance of minor antenna components in the energy transfer sequence of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Mimuro M; Nozawa T; Tamai N; Nishimura Y; Yamazaki I
    FEBS Lett; 1994 Mar; 340(3):167-72. PubMed ID: 8131839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.