These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12700084)

  • 1. Sleep networks and the anatomic and physiologic connections with respiratory control.
    Haxhiu MA; Mack SO; Wilson CG; Feng P; Strohl KP
    Front Biosci; 2003 May; 8():d946-62. PubMed ID: 12700084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of sleep-induced changes in airway function: implication for nocturnal worsening of bronchial asthma.
    Haxhiu MA; Kc P; Balan KV; Wilson CG; Martin RJ
    Adv Exp Med Biol; 2008; 605():469-74. PubMed ID: 18085319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allergic lung inflammation affects central noradrenergic control of cholinergic outflow to the airways in ferrets.
    Wilson CG; Akhter S; Mayer CA; Kc P; Balan KV; Ernsberger P; Haxhiu MA
    J Appl Physiol (1985); 2007 Dec; 103(6):2095-104. PubMed ID: 17872402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep-wake control of the upper airway by noradrenergic neurons, with and without intermittent hypoxia.
    Kubin L
    Prog Brain Res; 2014; 209():255-74. PubMed ID: 24746052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNS determinants of sleep-related worsening of airway functions: implications for nocturnal asthma.
    Haxhiu MA; Rust CF; Brooks C; Kc P
    Respir Physiol Neurobiol; 2006 Mar; 151(1):1-30. PubMed ID: 16198640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms.
    Kubin L
    Compr Physiol; 2016 Sep; 6(4):1801-1850. PubMed ID: 27783860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholaminergic microcircuitry controlling the output of airway-related vagal preganglionic neurons.
    Haxhiu MA; Kc P; Neziri B; Yamamoto BK; Ferguson DG; Massari VJ
    J Appl Physiol (1985); 2003 May; 94(5):1999-2009. PubMed ID: 12514167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breathing during sleep.
    Kubin L
    Handb Clin Neurol; 2022; 188():179-199. PubMed ID: 35965026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central nervous system control of the airways: pharmacological implications.
    Mazzone SB; Canning BJ
    Curr Opin Pharmacol; 2002 Jun; 2(3):220-8. PubMed ID: 12020461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of histamine or serotonin to the hypoglossal nucleus increases genioglossus muscle activity across the wake-sleep cycle.
    Neuzeret PC; Sakai K; Gormand F; Petitjean T; Buda C; Sastre JP; Parrot S; Guidon G; Lin JS
    J Sleep Res; 2009 Mar; 18(1):113-21. PubMed ID: 19250178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of central neurotransmission and chemoreception on airway control.
    Kc P; Martin RJ
    Respir Physiol Neurobiol; 2010 Oct; 173(3):213-22. PubMed ID: 20359553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational model of brain-stem circuit for state-dependent control of hypoglossal motoneurons.
    Naji M; Komarov M; Krishnan GP; Malhotra A; Powell FL; Rukhadze I; Fenik VB; Bazhenov M
    J Neurophysiol; 2018 Jul; 120(1):296-305. PubMed ID: 29617218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroanatomical Basis of State-Dependent Activity of Upper Airway Muscles.
    Rukhadze I; Fenik VB
    Front Neurol; 2018; 9():752. PubMed ID: 30250449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles.
    Rukhadze I; Carballo NJ; Bandaru SS; Malhotra A; Fuller PM; Fenik VB
    Respir Physiol Neurobiol; 2017 Oct; 244():41-50. PubMed ID: 28711601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central nervous pathways and control of the airways.
    Jordan D
    Respir Physiol; 2001 Mar; 125(1-2):67-81. PubMed ID: 11240153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinic excitation of rat hypoglossal motoneurons.
    Chamberlin NL; Bocchiaro CM; Greene RW; Feldman JL
    Neuroscience; 2002; 115(3):861-70. PubMed ID: 12435424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical profile of vagal preganglionic motor cells innervating the airways in ferrets: the absence of noncholinergic neurons.
    Kc P; Mayer CA; Haxhiu MA
    J Appl Physiol (1985); 2004 Oct; 97(4):1508-17. PubMed ID: 15358755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist of 5-HT1A/7 receptors but not that of 5-HT2 receptors disinhibits tracheobronchial-projecting airway vagal preganglionic neurons of rats.
    Chen Y; Wang L; Zhou X; Ge D; Yuan W; Wang J
    Neuroscience; 2012 Apr; 207():78-87. PubMed ID: 22342968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.