These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12700147)

  • 21. Aerobic sulfate reduction in microbial mats.
    Canfield DE; Des Marais DJ
    Science; 1991 Mar; 251():1471-3. PubMed ID: 11538266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat: a microsensor study.
    Ludwig R; Pringault O; de Wit R; de Beer D; Jonkers HM
    FEMS Microbiol Ecol; 2006 Jul; 57(1):9-17. PubMed ID: 16819945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile.
    Fernandez AB; Rasuk MC; Visscher PT; Contreras M; Novoa F; Poire DG; Patterson MM; Ventosa A; Farias ME
    Front Microbiol; 2016; 7():1284. PubMed ID: 27597845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geological evidence of oxygenic photosynthesis and the biotic response to the 2400-2200 ma "great oxidation event".
    Schopf JW
    Biochemistry (Mosc); 2014 Mar; 79(3):165-77. PubMed ID: 24821442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat.
    Wieland A; Pape T; Möbius J; Klock JH; Michaelis W
    Geobiology; 2008 Mar; 6(2):171-86. PubMed ID: 18380879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergence of modern marine ecosystems.
    Hull PM
    Curr Biol; 2017 Jun; 27(11):R466-R469. PubMed ID: 28586680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure.
    Green SJ; Blackford C; Bucki P; Jahnke LL; Prufert-Bebout L
    ISME J; 2008 May; 2(5):457-70. PubMed ID: 18288215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyanobacterial reuse of extracellular organic carbon in microbial mats.
    Stuart RK; Mayali X; Lee JZ; Craig Everroad R; Hwang M; Bebout BM; Weber PK; Pett-Ridge J; Thelen MP
    ISME J; 2016 May; 10(5):1240-51. PubMed ID: 26495994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Was the Archaean biosphere upside down?
    Walker JC
    Nature; 1987 Oct; 329():710-2. PubMed ID: 11539735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model of carbon fixation in microbial mats from 3,500 Myr ago to the present.
    Rothschild LJ; Mancinelli RL
    Nature; 1990 Jun; 345(6277):710-2. PubMed ID: 11536465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats.
    Bosak T; Bush JW; Flynn MR; Liang B; Ono S; Petroff AP; Sim MS
    Geobiology; 2010 Jan; 8(1):45-53, 53-5. PubMed ID: 20055899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light utilization efficiency in photosynthetic microbial mats.
    Al-Najjar MA; de Beer D; Kühl M; Polerecky L
    Environ Microbiol; 2012 Apr; 14(4):982-92. PubMed ID: 22176769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fungal communities of young and mature hypersaline microbial mats.
    Cantrell SA; Tkavc R; Gunde-Cimerman N; Zalar P; Acevedo M; Báez-Félix C
    Mycologia; 2013; 105(4):827-36. PubMed ID: 23709488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Salinity-driven ecology and diversity changes of heterocytous cyanobacteria in Australian freshwater and coastal-marine microbial mats.
    Campbell MA; Bauersachs T; Schwark L; Proemse BC; Eberhard RS; Coolen MJL; Grice K
    Environ Microbiol; 2022 Dec; 24(12):6493-6509. PubMed ID: 36156347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Timing of morphological and ecological innovations in the cyanobacteria--a key to understanding the rise in atmospheric oxygen.
    Blank CE; Sánchez-Baracaldo P
    Geobiology; 2010 Jan; 8(1):1-23. PubMed ID: 19863595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity of inorganic carbon acquisition mechanisms by intact microbial mats of Microcoleus chthonoplastes (Cyanobacteriae, Oscillatoriaceae).
    Carrasco M; Mercado JM; Niell FX
    Physiol Plant; 2008 May; 133(1):49-58. PubMed ID: 18405333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The biogeochemistry of hypersaline microbial mats.
    Des Marais DJ
    Adv Microb Ecol; 1995; 14():251-74. PubMed ID: 11539110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica).
    Fernández-Valiente E; Camacho A; Rochera C; Rico E; Vincent WF; Quesada A
    FEMS Microbiol Ecol; 2007 Feb; 59(2):377-85. PubMed ID: 17069622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring.
    Pierson BK; Parenteau MN; Griffin BM
    Appl Environ Microbiol; 1999 Dec; 65(12):5474-83. PubMed ID: 10584006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts.
    Palmer RJ; Friedmann EI
    Microb Ecol; 1990; 19():111-8. PubMed ID: 11538696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.