These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12700147)

  • 41. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts.
    Palmer RJ; Friedmann EI
    Microb Ecol; 1990; 19():111-8. PubMed ID: 11538696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat.
    Klatt JM; Gomez-Saez GV; Meyer S; Ristova PP; Yilmaz P; Granitsiotis MS; Macalady JL; Lavik G; Polerecky L; Bühring SI
    ISME J; 2020 Dec; 14(12):3024-3037. PubMed ID: 32770117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.
    Klatt JM; Haas S; Yilmaz P; de Beer D; Polerecky L
    Environ Microbiol; 2015 Sep; 17(9):3301-13. PubMed ID: 25630511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Biogeochemical processes in the algal-bacterial mats of the Urinskii alkaline hot spring].
    Brianskaia AV; Namsaraev ZB; Kalashnikova OM; Barkhutova DD; Namsaraev BB; Gorlenko VM
    Mikrobiologiia; 2006; 75(5):702-12. PubMed ID: 17091594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantifying potential N turnover rates in hypersaline microbial mats by
    Coban O; Rasigraf O; de Jong AEE; Spott O; Bebout BM
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endolithic microbial ecosystems.
    Walker JJ; Pace NR
    Annu Rev Microbiol; 2007; 61():331-47. PubMed ID: 17506683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ecosystems biology of microbial metabolism.
    Klitgord N; Segrè D
    Curr Opin Biotechnol; 2011 Aug; 22(4):541-6. PubMed ID: 21592777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elevated CO2: impact on diurnal patterns of photosynthesis in natural microbial ecosystems.
    Rothschild LJ
    Adv Space Res; 1994; 14(11):285-9. PubMed ID: 11538022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications.
    Paerl HW
    Microsc Res Tech; 1996 Jan; 33(1):47-72. PubMed ID: 8820664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
    Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ
    Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring of oxygenic and anoxygenic photosynthesis in a unicyanobacterial biofilm, grown in benthic gradient chamber.
    Pringault O; Garcia-Pichel F
    FEMS Microbiol Ecol; 2000 Sep; 33(3):251-258. PubMed ID: 11098076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf.
    Abed RM; Kohls K; de Beer D
    Environ Microbiol; 2007 Jun; 9(6):1384-92. PubMed ID: 17504476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery of large conical stromatolites in Lake Untersee, Antarctica.
    Andersen DT; Sumner DY; Hawes I; Webster-Brown J; McKay CP
    Geobiology; 2011 May; 9(3):280-93. PubMed ID: 21504538
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of salinity and light on organic carbon and nitrogen uptake in a hypersaline microbial mat.
    Yannarell AC; Paerl HW
    FEMS Microbiol Ecol; 2007 Dec; 62(3):345-53. PubMed ID: 17916075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments.
    Paerl HW; Pinckney JL; Steppe TF
    Environ Microbiol; 2000 Feb; 2(1):11-26. PubMed ID: 11243256
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain).
    Jonkers HM; Ludwig R; Wit R; Pringault O; Muyzer G; Niemann H; Finke N; Beer D
    FEMS Microbiol Ecol; 2003 May; 44(2):175-89. PubMed ID: 19719635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.
    Niyogi KK; Truong TB
    Curr Opin Plant Biol; 2013 Jun; 16(3):307-14. PubMed ID: 23583332
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photosynthesis in the Archean era.
    Olson JM
    Photosynth Res; 2006 May; 88(2):109-17. PubMed ID: 16453059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral.
    Myers JL; Richardson LL
    FEMS Microbiol Ecol; 2009 Feb; 67(2):242-51. PubMed ID: 19049501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypersaline cyanobacterial mats as indicators of elevated tropical hurricane activity and associated climate change.
    Paerl HW; Steppe TF; Buchan KC; Potts M
    Ambio; 2003 Mar; 32(2):87-90. PubMed ID: 12733791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.