These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12700147)

  • 61. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments.
    Ohkouchi N; Nakajima Y; Okada H; Ogawa NO; Suga H; Oguri K; Kitazato H
    Environ Microbiol; 2005 Jul; 7(7):1009-16. PubMed ID: 15946297
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake.
    Hawes I; Sumner DY; Andersen DT; Mackey TJ
    Geobiology; 2011 Sep; 9(5):394-410. PubMed ID: 21884362
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Earth's early biosphere.
    Des Marais DJ
    Gravit Space Biol Bull; 1998 May; 11(2):23-30. PubMed ID: 11540635
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oxygenic photosynthesis and respiratory activity in microbial mats of the ebro delta, spain, by oxygen exchange method.
    Urmeneta J; Alcoba ; Razquin E; Tarroja E; Navarrete A; Guerrero R
    Curr Microbiol; 1998 Sep; 37(3):151-5. PubMed ID: 9688812
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.
    Zhang Y; Guanter L; Berry JA; Joiner J; van der Tol C; Huete A; Gitelson A; Voigt M; Köhler P
    Glob Chang Biol; 2014 Dec; 20(12):3727-42. PubMed ID: 24953485
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium.
    Berman-Frank I; Lundgren P; Chen YB; Küpper H; Kolber Z; Bergman B; Falkowski P
    Science; 2001 Nov; 294(5546):1534-7. PubMed ID: 11711677
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The fundamental processes in ecology: a thought experiment on extraterrestrial biospheres.
    Wilkinson DM
    Biol Rev Camb Philos Soc; 2003 May; 78(2):171-9. PubMed ID: 12803419
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prokaryotic photosynthesis and phototrophy illuminated.
    Bryant DA; Frigaard NU
    Trends Microbiol; 2006 Nov; 14(11):488-96. PubMed ID: 16997562
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Does iron inhibit cryptoendolithic microbial communities?
    Johnston CG; Vestal JR
    Antarct J US; 1988; 21(5):225-6. PubMed ID: 11538332
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles.
    Finke N; Simister RL; O'Neil AH; Nomosatryo S; Henny C; MacLean LC; Canfield DE; Konhauser K; Lalonde SV; Fowle DA; Crowe SA
    Nat Commun; 2019 Sep; 10(1):4323. PubMed ID: 31541087
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evaporative silicification in floating microbial mats: patterns of oxygen production and preservation potential in silica-undersaturated streams, El Tatio, Chile.
    Wilmeth DT; Myers KD; Lalonde SV; Mänd K; Konhauser KO; Grandin P; van Zuilen MA
    Geobiology; 2022 Mar; 20(2):310-330. PubMed ID: 34676677
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interactions of photosynthesis with genome size and function.
    Raven JA; Beardall J; Larkum AW; Sánchez-Baracaldo P
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1622):20120264. PubMed ID: 23754816
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cell biology of photosynthesis over geologic time.
    Flamholz A; Shih PM
    Curr Biol; 2020 May; 30(10):R490-R494. PubMed ID: 32428488
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Crucial crises in biology: life in the deep biosphere.
    Guerrero R
    Int Microbiol; 1998 Dec; 1(4):285-94. PubMed ID: 10943376
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biogeochemical Transformations in the History of the Ocean.
    Lenton TM; Daines SJ
    Ann Rev Mar Sci; 2017 Jan; 9():31-58. PubMed ID: 27575740
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolic shifts in hypersaline microbial mats upon addition of organic substrates.
    Grötzschel S; Abed RM; de Beer D
    Environ Microbiol; 2002 Nov; 4(11):683-95. PubMed ID: 12460276
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbial biospherics: The experimental study of ecosystem function and evolution.
    Rillig MC; Antonovics J
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11093-11098. PubMed ID: 31110020
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions.
    Wong HL; Ahmed-Cox A; Burns BP
    Microorganisms; 2016 Jan; 4(1):. PubMed ID: 27681900
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans.
    Liu H; Probert I; Uitz J; Claustre H; Aris-Brosou S; Frada M; Not F; de Vargas C
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12803-8. PubMed ID: 19622724
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach.
    De Anda V; Zapata-Peñasco I; Blaz J; Poot-Hernández AC; Contreras-Moreira B; González-Laffitte M; Gámez-Tamariz N; Hernández-Rosales M; Eguiarte LE; Souza V
    Front Microbiol; 2018; 9():2606. PubMed ID: 30555424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.