BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12700230)

  • 1. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules.
    Friedler A; Veprintsev DB; Hansson LO; Fersht AR
    J Biol Chem; 2003 Jun; 278(26):24108-12. PubMed ID: 12700230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants.
    Friedler A; Hansson LO; Veprintsev DB; Freund SM; Rippin TM; Nikolova PV; Proctor MR; Rüdiger S; Fersht AR
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):937-42. PubMed ID: 11782540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant.
    Ishimaru D; Maia LF; Maiolino LM; Quesado PA; Lopez PC; Almeida FC; Valente AP; Silva JL
    J Mol Biol; 2003 Oct; 333(2):443-51. PubMed ID: 14529628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core.
    Khoo KH; Joerger AC; Freund SM; Fersht AR
    Protein Eng Des Sel; 2009 Jul; 22(7):421-30. PubMed ID: 19515728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue.
    Wallentine BD; Wang Y; Tretyachenko-Ladokhina V; Tan M; Senear DF; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2146-56. PubMed ID: 24100332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide.
    Issaeva N; Friedler A; Bozko P; Wiman KG; Fersht AR; Selivanova G
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13303-7. PubMed ID: 14595027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic stability of wild-type and mutant p53 core domain.
    Bullock AN; Henckel J; DeDecker BS; Johnson CM; Nikolova PV; Proctor MR; Lane DP; Fersht AR
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14338-42. PubMed ID: 9405613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells.
    Rippin TM; Bykov VJ; Freund SM; Selivanova G; Wiman KG; Fersht AR
    Oncogene; 2002 Mar; 21(14):2119-29. PubMed ID: 11948395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation".
    Friedler A; DeDecker BS; Freund SM; Blair C; Rüdiger S; Fersht AR
    J Mol Biol; 2004 Feb; 336(1):187-96. PubMed ID: 14741214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-order rate-determining aggregation mechanism of p53 and its implications.
    Wang G; Fersht AR
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13590-5. PubMed ID: 22869710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling.
    Xirodimas DP; Lane DP
    J Biol Chem; 1999 Sep; 274(39):28042-9. PubMed ID: 10488156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic partitioning during folding of the p53 DNA binding domain.
    Butler JS; Loh SN
    J Mol Biol; 2005 Jul; 350(5):906-18. PubMed ID: 15982667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of stability on the biological function of p53.
    Khoo KH; Mayer S; Fersht AR
    J Biol Chem; 2009 Nov; 284(45):30974-80. PubMed ID: 19700401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains.
    Ang HC; Joerger AC; Mayer S; Fersht AR
    J Biol Chem; 2006 Aug; 281(31):21934-21941. PubMed ID: 16754663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tetramerization in p53 function.
    Chène P
    Oncogene; 2001 May; 20(21):2611-7. PubMed ID: 11420672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High thermostability and lack of cooperative DNA binding distinguish the p63 core domain from the homologous tumor suppressor p53.
    Klein C; Georges G; Künkele KP; Huber R; Engh RA; Hansen S
    J Biol Chem; 2001 Oct; 276(40):37390-401. PubMed ID: 11477076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen exchange of the tetramerization domain of the human tumour suppressor p53 probed by denaturants and temperature.
    Neira JL; Mateu MG
    Eur J Biochem; 2001 Sep; 268(18):4868-77. PubMed ID: 11559355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.