BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 12701132)

  • 1. High-throughput flow cytometry: validation in microvolume bioassays.
    Ramirez S; Aiken CT; Andrzejewski B; Sklar LA; Edwards BS
    Cytometry A; 2003 May; 53(1):55-65. PubMed ID: 12701132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput flow cytometry.
    Kuckuck FW; Edwards BS; Sklar LA
    Cytometry; 2001 May; 44(1):83-90. PubMed ID: 11309812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands.
    Young SM; Bologa C; Prossnitz ER; Oprea TI; Sklar LA; Edwards BS
    J Biomol Screen; 2005 Jun; 10(4):374-82. PubMed ID: 15964939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-intensity multiplexing: simultaneous seven-marker, two-color immunophenotyping using flow cytometry.
    Bradford JA; Buller G; Suter M; Ignatius M; Beechem JM
    Cytometry A; 2004 Oct; 61(2):142-52. PubMed ID: 15382027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.
    Young SM; Curry MS; Ransom JT; Ballesteros JA; Prossnitz ER; Sklar LA; Edwards BS
    J Biomol Screen; 2004 Mar; 9(2):103-11. PubMed ID: 15006133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content.
    Schmid I; Dagarag MD; Hausner MA; Matud JL; Just T; Effros RB; Jamieson BD
    Cytometry; 2002 Nov; 49(3):96-105. PubMed ID: 12442309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells.
    Nuutila J; Lilius EM
    Cytometry A; 2005 Jun; 65(2):93-102. PubMed ID: 15825183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular screening of formylpeptide receptor ligands with a sensitive, quantitative, high-throughput flow cytometry platform.
    Edwards BS; Young SM; Oprea TI; Bologa CG; Prossnitz ER; Sklar LA
    Nat Protoc; 2006; 1(1):59-66. PubMed ID: 17406212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of interlaboratory variability in flow cytometric immunophenotyping by standardization of instrument set-up and calibration, and standard list mode data analysis.
    Gratama JW; Kraan J; Adriaansen H; Hooibrink B; Levering W; Reinders P; Van den Beemd MW; Van der Holt B; Bolhuis RL
    Cytometry; 1997 Feb; 30(1):10-22. PubMed ID: 9056737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrepancy in measuring CD4 expression on T-lymphocytes using fluorescein conjugates in comparison with unimolar CD4-phycoerythrin conjugates.
    Wang L; Abbasi F; Gaigalas AK; Hoffman RA; Flagler D; Marti GE
    Cytometry B Clin Cytom; 2007 Nov; 72(6):442-9. PubMed ID: 17474131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plug flow cytometry: An automated coupling device for rapid sequential flow cytometric sample analysis.
    Edwards BS; Kuckuck F; Sklar LA
    Cytometry; 1999 Oct; 37(2):156-9. PubMed ID: 10486528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multicolor flow cytometric assay for measurement of platelet-derived microparticles.
    Mobarrez F; Antovic J; Egberg N; Hansson M; Jörneskog G; Hultenby K; Wallén H
    Thromb Res; 2010 Mar; 125(3):e110-6. PubMed ID: 19939440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid quantification of lymphocyte subsets in heterogeneous cell populations by flow cytometry.
    Pechhold K; Pohl T; Kabelitz D
    Cytometry; 1994 Jun; 16(2):152-9. PubMed ID: 7924684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced gravity evaluation of potential spaceflight-compatible flow cytometer technology.
    Crucian B; Sams C
    Cytometry B Clin Cytom; 2005 Jul; 66(1):1-9. PubMed ID: 15924305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of histamine and histamine analogs to lymphocyte subsets analyzed by flow cytometry.
    Muirhead K; Bender P; Hanna N; Poste G
    J Immunol; 1985 Dec; 135(6):4120-8. PubMed ID: 2415600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of liquid carryover and sample residual for a high-throughput flow cytometer sample delivery system.
    Bartsch JW; Tran HD; Waller A; Mammoli AA; Buranda T; Sklar LA; Edwards BS
    Anal Chem; 2004 Jul; 76(13):3810-7. PubMed ID: 15228359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification.
    Lowe M; Spiro A; Zhang YZ; Getts R
    Cytometry A; 2004 Aug; 60(2):135-44. PubMed ID: 15290714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of residual neuroblastoma cells in bone marrow: comparison of flow cytometry with immunocytochemistry.
    Swerts K; De Moerloose B; Dhooge C; Brichard B; Benoit Y; Laureys G; Philippé J
    Cytometry B Clin Cytom; 2004 Sep; 61(1):9-19. PubMed ID: 15351977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined HIV-1 protein bead array for serology assay and T-cell subset immunophenotyping with a hybrid flow cytometer: a step in the direction of a comprehensive multitasking instrument platform for infectious disease diagnosis and monitoring.
    Faucher S; Martel A; Sherring A; Bogdanovic D; Malloch L; Kim JE; Bergeron M; Sandstrom P; Mandy FF
    Cytometry B Clin Cytom; 2006 May; 70(3):179-88. PubMed ID: 16615079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flow cytometric method for detection and enumeration of low-level, residual red blood cells in platelets and mononuclear cell products.
    Santana JM; Dumont LJ
    Transfusion; 2006 Jun; 46(6):966-72. PubMed ID: 16734813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.