BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12701915)

  • 1. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Frølund B; Odum S; Nielsen PH
    Water Sci Technol; 2003; 47(5):117-22. PubMed ID: 12701915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial diversity in biofilms from corroding heating systems.
    Kjellerup BV; Thomsen TR; Nielsen JL; Olesen BH; Frølund B; Nielsen PH
    Biofouling; 2005; 21(1):19-29. PubMed ID: 16019388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system.
    Kjellerup BV; Gudmonsson G; Sowers K; Nielsen PH
    Biofouling; 2006; 22(3-4):145-51. PubMed ID: 17290859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon.
    Egli K; Bosshard F; Werlen C; Lais P; Siegrist H; Zehnder AJ; Van der Meer JR
    Microb Ecol; 2003 May; 45(4):419-32. PubMed ID: 12704553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system.
    Kjeldsen KU; Kjellerup BV; Egli K; Frølund B; Nielsen PH; Ingvorsen K
    FEMS Microbiol Ecol; 2007 Aug; 61(2):384-97. PubMed ID: 17651138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial communities and their interactions in biofilm systems: an overview.
    Wuertz S; Okabe S; Hausner M
    Water Sci Technol; 2004; 49(11-12):327-36. PubMed ID: 15303758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.
    Kjellerup BV; Kjeldsen KU; Lopes F; Abildgaard L; Ingvorsen K; Frølund B; Sowers KR; Nielsen PH
    Biofouling; 2009 Nov; 25(8):727-37. PubMed ID: 20183131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of bacteria in a domestic hot water system in a Danish apartment building.
    Bagh LK; Albrechtsen HJ; Arvin E; Ovesen K
    Water Res; 2004 Jan; 38(1):225-35. PubMed ID: 14630121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of microbial populations on the surface of protective coatings].
    Kopteva ZhP; Zanina VV; Piliashenko-Novokhatnyĭ AI; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2001; 63(2):3-9. PubMed ID: 11558243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Sowers KR; Nielsen PH
    J Appl Microbiol; 2008 Dec; 105(6):2231-8. PubMed ID: 19016973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrata effects on bacterial biofilm development in a subsurface flow dairy waste treatment wetland.
    Silyn-Roberts G; Lewis G
    Water Sci Technol; 2003; 48(8):261-9. PubMed ID: 14682595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role and levels of real-time monitoring for successful anti-fouling strategies--an overview.
    Flemming HC
    Water Sci Technol; 2003; 47(5):1-8. PubMed ID: 12701899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detachment of multi species biofilm in circulating fluidized bed bioreactor.
    Patel A; Nakhla G; Zhu J
    Biotechnol Bioeng; 2005 Nov; 92(4):427-37. PubMed ID: 16028296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.
    Pavlekovic M; Schmid MC; Schmider-Poignee N; Spring S; Pilhofer M; Gaul T; Fiandaca M; Löffler FE; Jetten M; Schleifer KH; Lee NM
    J Microbiol Methods; 2009 Aug; 78(2):119-26. PubMed ID: 19389431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm formation in a hot water system.
    Bagh LK; Albrechtsen HJ; Arvin E; Ovesen K
    Water Sci Technol; 2002; 46(9):95-101. PubMed ID: 12448457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor.
    Rao TS; Kora AJ; Chandramohan P; Panigrahi BS; Narasimhan SV
    Biofouling; 2009 Oct; 25(7):581-91. PubMed ID: 20183117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition of bacterial spatial organization in a biofilm monitored by FISH and subsequent image analysis.
    Aoi Y; Tsuneda S; Hirata A
    Water Sci Technol; 2004; 49(11-12):365-70. PubMed ID: 15303763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial composition of biofilms in a brewery investigated by fatty acid analysis, fluorescence in situ hybridisation and isolation techniques.
    Timke M; Wolking D; Wang-Lieu NQ; Altendorf K; Lipski A
    Appl Microbiol Biotechnol; 2004 Nov; 66(1):100-7. PubMed ID: 15085296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of seawater ozonation on biofilm development in aquaculture tanks.
    Wietz M; Hall MR; Høj L
    Syst Appl Microbiol; 2009 Jul; 32(4):266-77. PubMed ID: 19446976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of microbial diversity by fluorescence in situ hybridization and fluorescence spectrometry.
    Ivanov V; Tay ST; Tay JH
    Water Sci Technol; 2003; 47(5):133-8. PubMed ID: 12701918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.