These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 12702012)

  • 1. Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity.
    Balibrea ME; Cuartero J; Bolarín MC; Pérez-Alfocea F
    Physiol Plant; 2003 May; 118(1):38-46. PubMed ID: 12702012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism.
    Balibrea ME; Martínez-Andújar C; Cuartero J; Bolarín MC; Pérez-Alfocea F
    Funct Plant Biol; 2006 Mar; 33(3):279-288. PubMed ID: 32689235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.
    Albacete A; Cantero-Navarro E; Balibrea ME; Großkinsky DK; de la Cruz González M; Martínez-Andújar C; Smigocki AC; Roitsch T; Pérez-Alfocea F
    J Exp Bot; 2014 Nov; 65(20):6081-95. PubMed ID: 25170099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose Synthase in Wild Tomato, Lycopersicon chmielewskii, and Tomato Fruit Sink Strength.
    Sun J; Loboda T; Sung SJ; Black CC
    Plant Physiol; 1992 Mar; 98(3):1163-9. PubMed ID: 16668741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between tomato fruit growth and fruit osmotic potential under salinity.
    Bolarin MC; Estañ MT; Caro M; Romero-Aranda R; Cuartero J
    Plant Sci; 2001 May; 160(6):1153-1159. PubMed ID: 11337072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose Synthase, Starch Accumulation, and Tomato Fruit Sink Strength.
    Wang F; Sanz A; Brenner ML; Smith A
    Plant Physiol; 1993 Jan; 101(1):321-327. PubMed ID: 12231688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit.
    Klann EM; Chetelat RT; Bennett AB
    Plant Physiol; 1993 Nov; 103(3):863-870. PubMed ID: 12231984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato.
    Chetelat RT; Deverna JW; Bennett AB
    Theor Appl Genet; 1995 Jul; 91(2):334-9. PubMed ID: 24169782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sink Metabolism in Tomato Fruit : III. Analysis of Carbohydrate Assimilation in a Wild Species.
    Yelle S; Hewitt JD; Robinson NL; Damon S; Bennett AB
    Plant Physiol; 1988 Jul; 87(3):737-40. PubMed ID: 16666217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic Components of Sucrose Accumulation in the Wild Tomato Species Lycopersicon peruvianum.
    Stommel JR
    Plant Physiol; 1992 May; 99(1):324-8. PubMed ID: 16668869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate availability affects growth and metabolism in peach fruit.
    Morandi B; Corelli Grappadelli L; Rieger M; Lo Bianco R
    Physiol Plant; 2008 Jun; 133(2):229-41. PubMed ID: 18298408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of salinity on tomato fruit ripening.
    Mizrahi Y
    Plant Physiol; 1982 Apr; 69(4):966-70. PubMed ID: 16662327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased sink/source ratio enhances hexose transport in the fruits of greenhouse tomatoes: integration of gene expression and biochemical analyses.
    Aslani L; Gholami M; Mobli M; Ehsanzadeh P; Bertin N
    Physiol Plant; 2020 Sep; 170(1):120-131. PubMed ID: 32356387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato.
    Ho LC
    J Exp Bot; 1996 Aug; 47 Spec No():1239-43. PubMed ID: 21245255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits.
    Dali N; Michaud D; Yelle S
    Plant Physiol; 1992 Jun; 99(2):434-8. PubMed ID: 16668903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Activities in Developing Fruit of Lycopersicon esculentum Mill. and the Sucrose Accumulating Lycopersicon hirsutum Humb. and Bonpl.
    Miron D; Schaffer AA
    Plant Physiol; 1991 Feb; 95(2):623-7. PubMed ID: 16668028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sink Metabolism in Tomato Fruit : IV. Genetic and Biochemical Analysis of Sucrose Accumulation.
    Yelle S; Chetelat RT; Dorais M; Deverna JW; Bennett AB
    Plant Physiol; 1991 Apr; 95(4):1026-35. PubMed ID: 16668087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose uptake, invertase localization and gene expression in developing fruit of Lycopersicon esculentum and the sucrose-accumulating Lycopersicon hirsutum.
    Miron D; Petreikov M; Carmi N; Shen S; Levin I; Granot D; Zamski E; Schaffer AA
    Physiol Plant; 2002 May; 115(1):35-47. PubMed ID: 12010465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sink metabolism in tomato fruit : I. Developmental changes in carbohydrate metabolizing enzymes.
    Robinson NL; Hewitt JD; Bennett AB
    Plant Physiol; 1988 Jul; 87(3):727-30. PubMed ID: 16666215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill.
    Boggio SB; Palatnik JF; Heldt HW; Valle EM
    Plant Sci; 2000 Oct; 159(1):125-133. PubMed ID: 11011100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.