These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12702241)

  • 1. A flow-cytometric method for determination of yeast viability and cell number in a brewery.
    Boyd AR; Gunasekera TS; Attfield PV; Simic K; Vincent SF; Veal DA
    FEMS Yeast Res; 2003 Mar; 3(1):11-6. PubMed ID: 12702241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of flow cytometry to wine microorganisms.
    Longin C; Petitgonnet C; Guilloux-Benatier M; Rousseaux S; Alexandre H
    Food Microbiol; 2017 Apr; 62():221-231. PubMed ID: 27889152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid detection of viable yeasts and bacteria in wine by flow cytometry.
    Malacrinò P; Zapparoli G; Torriani S; Dellaglio F
    J Microbiol Methods; 2001 Jun; 45(2):127-34. PubMed ID: 11311398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts.
    Attfield PV; Kletsas S; Veal DA; van Rooijen R; Bell PJ
    J Appl Microbiol; 2000 Aug; 89(2):207-14. PubMed ID: 10971752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometry and cell sorting for yeast viability assessment and cell selection.
    Deere D; Shen J; Vesey G; Bell P; Bissinger P; Veal D
    Yeast; 1998 Jan; 14(2):147-60. PubMed ID: 9483803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of flow cytometry with fluorescent antibodies in real-time monitoring of simultaneously inoculated alcoholic-malolactic fermentation of Chardonnay.
    Rodriguez SB; Thornton RJ
    Lett Appl Microbiol; 2008 Jan; 46(1):38-42. PubMed ID: 17944859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid, vital staining procedure for flow cytometric analysis of human reticulocytes.
    Sage BH; O'Connell JP; Mercolino TJ
    Cytometry; 1983 Nov; 4(3):222-7. PubMed ID: 6198129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes.
    Monthéard J; Garcier S; Lombard E; Cameleyre X; Guillouet S; Molina-Jouve C; Alfenore S
    J Microbiol Methods; 2012 Oct; 91(1):8-13. PubMed ID: 22796678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual fluorochrome flow cytometric assessment of yeast viability.
    Hernlem B; Hua SS
    Curr Microbiol; 2010 Jul; 61(1):57-63. PubMed ID: 20049598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of methylene blue viability staining with the emerging pathogen Candida auris.
    Parker RA; Gabriel KT; Graham K; Cornelison CT
    J Microbiol Methods; 2020 Feb; 169():105829. PubMed ID: 31884053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-flow fractionation as analytical technique for the characterization of dry yeast: correlation with wine fermentation activity.
    Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2003; 19(6):1786-91. PubMed ID: 14656157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow Cytometry and Fluorescence Microscopy as Tools for Structural and Functional Analysis of Vacuoles Isolated from Yeast and Plant Cells.
    Rodrigues JMP; Pereira CS; Fontes N; Gerós H; Côrte-Real M
    Methods Mol Biol; 2018; 1789():101-115. PubMed ID: 29916074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Flow cytometric analysis using live/dead staining for yeast cells which were autoclaved and treated with various disinfectants].
    Tokashiki YT; Tanokuchi Y; Nakasone I; Yamane N
    Rinsho Byori; 2007 Mar; 55(3):230-6. PubMed ID: 17441466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.
    Rosebrock AP
    Cold Spring Harb Protoc; 2017 Jan; 2017(1):. PubMed ID: 28049776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological significance of the cytometric distribution of fluorescent yeasts after viability staining.
    Bouchez JC; Cornu M; Danzart M; Leveau JY; Duchiron F; Bouix M
    Biotechnol Bioeng; 2004 Jun; 86(5):520-30. PubMed ID: 15129435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent labeling of DNA.
    Cunningham RE
    Methods Mol Biol; 2010; 588():341-4. PubMed ID: 20012846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of population dynamics and physical interactions in a synthetic yeast ecosystem by use of multicolour flow cytometry.
    Conacher CG; Naidoo-Blassoples RK; Rossouw D; Bauer FF
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5547-5562. PubMed ID: 32318769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining.
    Nescerecka A; Hammes F; Juhna T
    J Microbiol Methods; 2016 Dec; 131():172-180. PubMed ID: 27810378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate assessment of cell count and viability with a flow cytometer.
    Shenkin M; Babu R; Maiese R
    Cytometry B Clin Cytom; 2007 Sep; 72(5):427-32. PubMed ID: 17266154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Microbial Viability Using Flow Cytometry.
    Davey H; Guyot S
    Curr Protoc Cytom; 2020 Jun; 93(1):e72. PubMed ID: 32289207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.