These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 12702322)
1. Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients. Piper MD; Hong SP; Eissing T; Sealey P; Dawes IW FEMS Yeast Res; 2002 Mar; 2(1):59-71. PubMed ID: 12702322 [TBL] [Abstract][Full Text] [Related]
2. Control of expression of one-carbon metabolism genes of Saccharomyces cerevisiae is mediated by a tetrahydrofolate-responsive protein binding to a glycine regulatory region including a core 5'-CTTCTT-3' motif. Hong SP; Piper MD; Sinclair DA; Dawes IW J Biol Chem; 1999 Apr; 274(15):10523-32. PubMed ID: 10187845 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of GCV3, the Saccharomyces cerevisiae gene coding for the glycine cleavage system hydrogen carrier protein. Nagarajan L; Storms RK J Biol Chem; 1997 Feb; 272(7):4444-50. PubMed ID: 9020168 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae. Piper MD; Hong SP; Ball GE; Dawes IW J Biol Chem; 2000 Oct; 275(40):30987-95. PubMed ID: 10871621 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p. Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949 [TBL] [Abstract][Full Text] [Related]
6. Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. Sinclair DA; Hong SP; Dawes IW Mol Microbiol; 1996 Feb; 19(3):611-23. PubMed ID: 8830251 [TBL] [Abstract][Full Text] [Related]
7. Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae. Sinclair DA; Dawes IW Genetics; 1995 Aug; 140(4):1213-22. PubMed ID: 7498764 [TBL] [Abstract][Full Text] [Related]
8. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. Gelling CL; Piper MD; Hong SP; Kornfeld GD; Dawes IW J Biol Chem; 2004 Feb; 279(8):7072-81. PubMed ID: 14645232 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. Coffman JA; Cooper TG J Bacteriol; 1997 Sep; 179(17):5609-13. PubMed ID: 9287023 [TBL] [Abstract][Full Text] [Related]
10. Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. McNeil JB; Zhang F; Taylor BV; Sinclair DA; Pearlman RE; Bognar AL Gene; 1997 Feb; 186(1):13-20. PubMed ID: 9047339 [TBL] [Abstract][Full Text] [Related]
11. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Roth S; Schüller HJ Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757 [TBL] [Abstract][Full Text] [Related]
12. The isolation and characterisation of a Saccharomyces cerevisiae gene (LIP2) involved in the attachment of lipoic acid groups to mitochondrial enzymes. Marvin ME; Williams PH; Cashmore AM FEMS Microbiol Lett; 2001 May; 199(1):131-6. PubMed ID: 11356580 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Springael JY; Penninckx MJ Biochem J; 2003 Apr; 371(Pt 2):589-95. PubMed ID: 12529169 [TBL] [Abstract][Full Text] [Related]
14. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428 [TBL] [Abstract][Full Text] [Related]
15. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Kuruvilla FG; Shamji AF; Schreiber SL Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207 [TBL] [Abstract][Full Text] [Related]
17. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. Coffman JA; Rai R; Loprete DM; Cunningham T; Svetlov V; Cooper TG J Bacteriol; 1997 Jun; 179(11):3416-29. PubMed ID: 9171383 [TBL] [Abstract][Full Text] [Related]
18. Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. Bysani N; Daugherty JR; Cooper TG J Bacteriol; 1991 Aug; 173(16):4977-82. PubMed ID: 1860815 [TBL] [Abstract][Full Text] [Related]
19. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Hartig A; Simon MM; Schuster T; Daugherty JR; Yoo HS; Cooper TG Nucleic Acids Res; 1992 Nov; 20(21):5677-86. PubMed ID: 1454530 [TBL] [Abstract][Full Text] [Related]
20. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Fayyadkazan M; Tate JJ; Vierendeels F; Cooper TG; Dubois E; Georis I Microbiologyopen; 2014 Jun; 3(3):271-87. PubMed ID: 24644271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]