BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12702392)

  • 41. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char.
    Acosta R; Fierro V; Martinez de Yuso A; Nabarlatz D; Celzard A
    Chemosphere; 2016 Apr; 149():168-76. PubMed ID: 26855221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison on pore development of activated carbon produced from palm shell and coconut shell.
    Daud WM; Ali WS
    Bioresour Technol; 2004 May; 93(1):63-9. PubMed ID: 14987722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.
    Meng LY; Park SJ
    J Colloid Interface Sci; 2010 Dec; 352(2):498-503. PubMed ID: 20851404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob.
    Tseng RL; Tseng SK
    J Colloid Interface Sci; 2005 Jul; 287(2):428-37. PubMed ID: 15925607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.
    Sethupathi S; Bashir MJ; Akbar ZA; Mohamed AR
    Waste Manag Res; 2015 Apr; 33(4):303-12. PubMed ID: 25804669
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of green alga-based activated carbon with lower impregnation ratio and less activation time by potassium tartrate for adsorption of chloramphenicol.
    Zhu X; Gao Y; Yue Q; Kan Y; Kong W; Gao B
    Ecotoxicol Environ Saf; 2017 Nov; 145():289-294. PubMed ID: 28755646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.
    Radhika M; Palanivelu K
    J Hazard Mater; 2006 Nov; 138(1):116-24. PubMed ID: 16806675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst.
    Baroutian S; Aroua MK; Raman AA; Sulaiman NM
    Bioresour Technol; 2011 Jan; 102(2):1095-102. PubMed ID: 20888219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of CO
    Siemak J; Michalkiewicz B
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40133-40141. PubMed ID: 37442926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of potassium hydroxide modified anthracite particles and enhanced removal of 17α-ethinylestradiol and bisphenol A.
    He J; Zhou Q; Guo J; Fang F
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22224-22235. PubMed ID: 29804254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mercury adsorption of modified mulberry twig chars in a simulated flue gas.
    Shu T; Lu P; He N
    Bioresour Technol; 2013 May; 136():182-7. PubMed ID: 23567680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.
    Hameed BH; Tan IA; Ahmad AL
    J Hazard Mater; 2008 Oct; 158(2-3):324-32. PubMed ID: 18329169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.
    Wang X; Qiu J; Ning P; Ren X; Li Z; Yin Z; Chen W; Liu W
    J Hazard Mater; 2012 Aug; 229-230():128-36. PubMed ID: 22704776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion.
    Sabiha-Hanim S; Mohd Noor MA; Rosma A
    Carbohydr Polym; 2015 Jan; 115():533-9. PubMed ID: 25439929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.
    Veksha A; Zaman W; Layzell DB; Hill JM
    Bioresour Technol; 2014 Nov; 171():88-94. PubMed ID: 25189513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yeast-based microporous carbon materials for carbon dioxide capture.
    Shen W; He Y; Zhang S; Li J; Fan W
    ChemSusChem; 2012 Jul; 5(7):1274-9. PubMed ID: 22696279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds.
    Aber S; Khataee A; Sheydaei M
    Bioresour Technol; 2009 Dec; 100(24):6586-91. PubMed ID: 19692238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water.
    Sun K; Tang J; Gong Y; Zhang H
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16640-51. PubMed ID: 26081779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching.
    Ji L; Shao Y; Xu Z; Zheng S; Zhu D
    Environ Sci Technol; 2010 Aug; 44(16):6429-36. PubMed ID: 20704245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.