These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1270240)

  • 1. Viscoelastic properties of bladder wall strips at constant elongation.
    Coolsaet BL; van Mastrigt R; van Duyl WA; Huygen RE
    Invest Urol; 1976 May; 13(6):435-40. PubMed ID: 1270240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of bladder wall strips.
    Coolsaet BL; Van Duyl WA; Van Mastrigt R; Schouten JW
    Invest Urol; 1975 Mar; 12(5):351-6. PubMed ID: 1112665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First results of stepwise straining of the human urinary bladder and human bladder strips.
    Van Mastrigt R; Coolsaet BL; Van Duyl WA
    Invest Urol; 1981 Jul; 19(1):58-61. PubMed ID: 7251329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of bladder strips: standardization of a technique.
    Susset JG; Regnier CH
    Invest Urol; 1981 May; 18(8):445-50. PubMed ID: 7228578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall.
    Nagatomi J; Toosi KK; Chancellor MB; Sacks MS
    Biomech Model Mechanobiol; 2008 Oct; 7(5):395-404. PubMed ID: 17690929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis.
    Glass DH; Roberts CJ; Litsky AS; Weber PA
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3919-26. PubMed ID: 18539936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of viscoelastic models of blood vessel wall.
    Orosz M; Molnárka G; Nádasy G; Raffai G; Kozmann G; Monos E
    Acta Physiol Hung; 1999; 86(3-4):265-71. PubMed ID: 10943658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison between the viscoelastic behavior of the urinary bladder and that of an ideal mechanic model].
    Palmas G; Rigato M
    Atti Accad Fisiocrit Siena Med Fis; 1967; 16(2):1731-63. PubMed ID: 5621204
    [No Abstract]   [Full Text] [Related]  

  • 9. Some influences of the contractile element on the visco-elastic properties of bladder wall strips.
    Coolsaet BL; van Mastrigt R; van Duyl WA; van Rees Vellinga F
    Eur Urol; 1978; 4(6):450-6. PubMed ID: 738305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of bladder. I. Mechanical model and its mathematical analysis.
    Kondo A; Susset JG; Lefaivre J
    Invest Urol; 1972 Sep; 10(2):154-63. PubMed ID: 5077605
    [No Abstract]   [Full Text] [Related]  

  • 11. Viscoelastic properties of the contracting detrusor. I. Theoretical basis.
    Venegas JG
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C355-63. PubMed ID: 1872376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for otolith dynamic response with a viscoelastic gel layer.
    Grant JW; Cotton JR
    J Vestib Res; 1990-1991; 1(2):139-51. PubMed ID: 1670147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.
    Craiem D; Rojo FJ; Atienza JM; Armentano RL; Guinea GV
    Phys Med Biol; 2008 Sep; 53(17):4543-54. PubMed ID: 18677037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple fluid-mechanical model for the prediction of the stress-strain relation of the male urinary bladder.
    Korkmaz I; Rogg B
    J Biomech; 2007; 40(3):663-8. PubMed ID: 16631761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy.
    Khatyr F; Imberdis C; Vescovo P; Varchon D; Lagarde JM
    Skin Res Technol; 2004 May; 10(2):96-103. PubMed ID: 15059176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model of skin deformation. III. The finite element model.
    Larrabee WF; Galt JA
    Laryngoscope; 1986 Apr; 96(4):413-9. PubMed ID: 3959702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical implementation of viscoelastic blood flow in a simplified arterial geometry.
    Rojas HA
    Med Eng Phys; 2007 May; 29(4):491-6. PubMed ID: 16919988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A viscoelastic material model to represent smooth muscle shortening.
    Pidaparti RM; Liu Y; Meiss RA
    Biomed Mater Eng; 1997; 7(3):171-7. PubMed ID: 9262830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The relationship between phenotype transformation and biomechanical properties of detrusor smooth muscle cell subjected to the cyclic mechanical stretch].
    Gong Y; Song B; Jin XY; Xiong EQ
    Zhonghua Wai Ke Za Zhi; 2003 Dec; 41(12):901-5. PubMed ID: 14728829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.