These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12702440)

  • 1. Direct and indirect electroosmotic flow velocity measurements in microchannels.
    Sinton D; Escobedo-Canseco C; Ren L; Li D
    J Colloid Interface Sci; 2002 Oct; 254(1):184-9. PubMed ID: 12702440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic flow velocity measurements in a square microchannel.
    Hsieh SS; Lin HC; Lin CY
    Colloid Polym Sci; 2006; 284(11):1275-1286. PubMed ID: 24058237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A novel method for the direct measurement of electroosmotic flow velocity on microfluidic chips].
    Sun Y; Shen Z; Zeng C
    Se Pu; 2007 Sep; 25(5):690-3. PubMed ID: 18161319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of caged fluorescent dye on the electroosmotic mobility in microchannels.
    Ross D; Locascio LE
    Anal Chem; 2003 Mar; 75(5):1218-20. PubMed ID: 12641244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA stretching on the wall surfaces in curved microchannels with different radii.
    Hsieh SS; Wu FH; Tsai MJ
    Nanoscale Res Lett; 2014; 9(1):382. PubMed ID: 25147488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography.
    Chen G; Tallarek U; Seidel-Morgenstern A; Zhang Y
    J Chromatogr A; 2004 Jul; 1044(1-2):287-94. PubMed ID: 15354450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate.
    Locascio LE; Perso CE; Lee CS
    J Chromatogr A; 1999 Oct; 857(1-2):275-84. PubMed ID: 10536846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The free solution mobility of DNA.
    Stellwagen NC; Gelfi C; Righetti PG
    Biopolymers; 1997 Nov; 42(6):687-703. PubMed ID: 9358733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The free solution mobility of DNA in Tris-acetate-EDTA buffers of different concentrations, with and without added NaCl.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2002 Jun; 23(12):1935-41. PubMed ID: 12116139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX; Foley JP
    Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic flow in nanofluidic channels.
    Haywood DG; Harms ZD; Jacobson SC
    Anal Chem; 2014 Nov; 86(22):11174-80. PubMed ID: 25365680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow with Joule heating effects.
    Xuan X; Xu B; Sinton D; Li D
    Lab Chip; 2004 Jun; 4(3):230-6. PubMed ID: 15159784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reexamination of Dependence of Plate Number on SDS Concentration in Micellar Electrokinetic Chromatography.
    Yu L; Seals TH; Davis JM
    Anal Chem; 1996 Dec; 68(23):4270-80. PubMed ID: 21619338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of electroosmotic flow in plastic microchannels.
    Ross D; Johnson TJ; Locascio LE
    Anal Chem; 2001 Jun; 73(11):2509-15. PubMed ID: 11403292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.